大型虚拟电厂频率响应特性及协调控制策略研究Frequency response characteristics and coordinated control strategy of large-scale virtual power plants
田泽禹,沙钊旸,严卉,王珠,赵全斌,种道彤
摘要(Abstract):
构建基于燃煤机组的大型虚拟电厂(L-VPP)是实现“双碳”目标下可再生能源消纳与燃煤发电转型的重要途径。建立了包含350 MW燃煤机组、100 MW光伏机组、90 MW·h电池储能和内部负载的L-VPP动态仿真模型与源-储调频控制系统模型。研究了在不同控制系统和燃煤机组变负荷速率下L-VPP的频率响应特性,发现燃煤机组变负荷速率是储能容量短缺时制约系统频率响应能力的关键因素,获得了源-储频率响应速率互补特性,进而提出了包含辅助功率指令与循环判定部分的协调控制策略。结果表明:采用上述协调策略控制后,频率极限值降低了0.06 Hz,稳态时间缩短了18.6%;以稳态误差低于频率死区为目标,燃煤机组的变负荷速率从不足3.50 MW/min提升至7.00 MW/min。该控制策略为大型虚拟电厂的安全高效运行提供了技术指导。
关键词(KeyWords): 频率响应特性;协调控制策略;大型虚拟电厂;能源管理系统;调频控制
基金项目(Foundation): 国家重点研发计划项目(2022YFB4202400);; 陕西省创新能力支撑计划(2023-LL-QY-29)~~
作者(Author): 田泽禹,沙钊旸,严卉,王珠,赵全斌,种道彤
DOI: 10.19666/j.rlfd.202411230
参考文献(References):
- [1]葛鑫鑫,付志扬,徐飞,等.面向新型电力系统的虚拟电厂商业模式与关键技术[J].电力系统自动化, 2022,46(18):129-146.GE Xinxin, FU Zhiyang, XU Fei, et al. Business model and key technologies of virtual power plant for new power system[J]. Automation of Electric Power Systems, 2022,46(18):129-146.
- [2] JU L, ZHAO R, TAN Q, et al. A multi-objective robust dispatching model and solution algorithm for a novel virtual power plant connected with power-to-gas and gas storage tank considering uncertainty and demand response[J]. Applied Energy, 2019, 250:1336-1355.
- [3]山西省能源局.虚拟电厂建设与运营管理实施方案[EB/OL].(2022-06-21)[2022-06-23]. https://www.shan xi.gov.cn/zfxxgk/zfxxgkzl/zc/xzgfxwj/bmgfxwj1/szfzsjg_76500/snyj_76509/202301/t20230128_7876895.shtml.Shanxi Provincial Energy Administration. Implementation plan for construction and operation management of VPPs[EB/OL].(2022-06-21)[2022-06-23]. https://www.shanxi.gov.cn/zfxxgk/zfxxgkzl/zc/xzgfxwj/bmgfxwj1/szf zsjg_76500/snyj_76509/202301/t20230128_7876895.sht ml.
- [4] OTHMAN M M, HEGAZY Y G, ABDELAZIZ A Y. A review of virtual power plant definitions, components,framework and optimization[J]. International Electrical Engineering Journal, 2015, 6(9):2010-2024.
- [5]何斯强,张俊岭,顾宗奇,等.面向分布式资源聚合管控的虚拟电厂建模与优化控制综述[J].山东电力技术,2024, 51(2):11-24.HE Siqiang, ZHANG Junling, GU Zongqi, et al. Overview of virtual power plant modeling and optimization control for distributed resource aggregation and control[J].Shandong Electric Power, 2024, 51(2):11-24.
- [6]向佳霓,赵建立,唐啸,等.虚拟电厂下建筑负荷与储能系统调度策略研究[J].现代建筑电气, 2021, 12(12):1-5.XIANG Jiani, ZHAO Jianli, TANG Xiao, et al. Research on scheduling strategy of building load and energy storage system in virtual power plant[J]. Modern Architecture Electric, 2021, 12(12):1-5.
- [7] LIU J, HU H, YU S S, et al. Virtual power plant with renewable energy sources and energy storage systems for sustainable power grid-formation, control techniques and demand response[J]. Energies, 2023, 16(9):3705.
- [8]付长虹,王桢祎.含新能源发电的电力系统一次频率响应最低点在线预测[J].电气应用, 2024, 43(5):50-57.FU Changhong, WANG Zhenyi. Prediction of nadir point of primary frequency response of power system with new energy generation[J]. Electrotechnical Application, 2024,43(5):50-57.
- [9] BHUIYAN E A, HOSSAIN M Z, MUYEEN S M, et al.Towards next generation virtual power plant:technology review and frameworks[J]. Renewable and Sustainable Energy Reviews, 2021, 150:111358.
- [10] CHEN Y, CHEN J, GE C, et al. Scheduled power tracking control of the virtual power plant for its internal contingency considering the communication delay and the unit capacity limitation[J]. Electric Power Systems Research, 2023, 221:109402.
- [11]石正,朱超,许寅,等.考虑多灵活资源的虚拟电厂频率响应特性建模方法[J].电力自动化设备, 2025,45(3):179-185.SHI Zheng, ZHU Chao, XU Yin, et al. Frequency response characteristics modeling method of virtual power plant considering multiple flexible resources[J]. Electric Power Automation Equipment, 2025, 45(3):179-185.
- [12] OSHNOEI S, AGHAMOHAMMADI M R, OSHNOEI S,et al. A novel virtual inertia control strategy for frequency regulation of islanded microgrid using two-layer multiple model predictive control[J]. Applied Energy, 2023, 343:121233.
- [13] ESFAHANI M, ALIZADEH A, CAO B, et al. A stochastic-robust aggregation strategy for VPP to participate in the frequency regulation market via backup batteries[J]. Journal of Energy Storage, 2024, 98:113057.
- [14] QIU D, BAIG A M, WANG Y, et al. Market design for ancillary service provisions of inertia and frequency response via virtual power plants:a non-convex bi-level optimization approach[J]. Applied Energy, 2024, 361:122929.
- [15]湛归,殷爽睿,艾芊,等.智能楼宇型虚拟电厂参与电力系统调频辅助服务策略[J].电力工程技术, 2022,41(6):13-20.ZHAN Gui, YIN Shuangrui, AI Qian, et al. A strategy for smart building-based virtual power plants participating in frequency regulation auxiliary service[J]. Electric Power Engineering Technology, 2022, 41(6):13-20.
- [16]武鑫,滕伟,柳亦兵.电网调频型飞轮储能系统自适应鲁棒充电控制方法研究[J].电力系统保护与控制,2019, 47(8):56-61.WU Xin, TENG Wei, LIU Yibing. Study on adaptive robust charge control of flywheel energy storage system for grid frequency adjustment[J]. Power System Protection and Control, 2019, 47(8):56-61.
- [17] AMIN M R, NEGNEVITSKY M, FRANKLIN E, et al.Application of battery energy storage systems for primary frequency control in power systems with high renewable energy penetration[J]. Energies, 2021, 14(5):1379.
- [18] CHAPALOGLOU S, NESIADIS A, ILIADIS P, et al.Smart energy management algorithm for load smoothing and peak shaving based on load forecasting of an island’s power system[J]. Applied Energy, 2019, 238:627-642.
- [19]周扬,张俊勃.适用于孤岛微电网的电压型虚拟同步发电机自适应惯性控制与频率恢复控制[J].南方电网技术, 2022, 16(1):127-136.ZHOU Yang, ZHANG Junbo. Adaptive inertia control and frequency recovery control of voltage-controlled virtual synchronous generators for an isolated microgrid[J]. Southern Power System Technology,2022, 16(1):127-136.
- [20]戴睿鹏,窦晓波,喻洁,等.含光储充的配网虚拟电厂二次调频随机模型预测控制策略[J].电网技术, 2024,48(8):3228-3237.DAI Ruipeng, KOU Xiaobo, YU Jie, et al. Secondary frequency control strategy for photovoltaic-storagecharging distribution-level virtual power plant based on stochastic model predictive control[J]. Power System Technology, 2024, 48(8):3228-3237.
- [21] TIAN Z, WANG Z, CHONG D, et al. Coordinated control strategy assessment of a virtual power plant based on electric public transportation[J]. Journal of Energy Storage, 2023, 59:106380.
- [22] TAN K M, BABU T S, RAMACHANDARAMURTHY V K, et al. Empowering smart grid:a comprehensive review of energy storage technology and application with renewable energy integration[J]. Journal of Energy Storage, 2021, 39:102591.
- [23] OSHNOEI A, KHERADMANDI M, BLAABJERG F, et al. Coordinated control scheme for provision of frequency regulation service by virtual power plants[J]. Applied Energy, 2022, 325:119734.
- [24]蔡振华,黎灿兵,阳同光,等.考虑动态频率惯量特性的储能电池参与电网一次调频控制[J].上海交通大学学报, 2024, 58(12):1946-1956.CAI Zhenhua, LI Canbing, YANG Tongguang, et al.Participation of energy storage batteries in primary frequency control for power grid considering dynamic frequency inertia characteristics[J]. Journal of Shanghai Jiao Tong University, 2024, 58(12):1946-1956.
- [25]李润,徐天奇,李琰,等.不同控制策略下虚拟电厂一次调频特性研究[J].现代电子技术, 2021, 44(17):95-99.LI Run, XU Tianqi, LI Yan, et al. Study on primary frequency modulation characteristics of virtual power plant using different control strategies[J]. Modern Electronics Technique, 2021, 44(17):95-99.
- [26]赵永亮,刁保圣,韩翔,等. 660 MW超临界燃煤机组变负荷过程动态特性的仿真研究[J].中国电力, 2019,52(5):13-20.ZHAO Yongliang, DIAO Baosheng, HAN Xiang, et al.Simulation study on the dynamic characteristics of a660 MW supercritical coal-fired power unit during AGC processes[J]. Electric Power, 2019, 52(5):13-20.
- [27] WANG Z, LIU M, ZHAO Y, et al. Flexibility and efficiency enhancement for double-reheat coal-fired power plants by control optimization considering boiler heat storage[J]. Energy, 2020, 201:117594.