平抑太阳能波动的高温吸热器锰基热化学涂层性能优化Performance optimization of Mn-based thermochemical coating for high-temperature receivers to dampen solar irradiance fluctuations
张添,刘静,孙田津,石丽萍,胡锐,帅威,何艺彬,祝培旺,肖刚
摘要(Abstract):
塔式光热布雷顿循环发电系统的布置灵活,其吸热器工作温度较高,太阳能波动容易造成吸热器材料热疲劳或表面超温,亟需探索平抑吸热器温度波动的有效途径。开发了一种基于可逆氧化还原反应的锰基热化学热防护涂层,当太阳辐射增强且温度超过978℃时,涂层材料发生还原吸热反应,降低升温速率;当太阳辐射减弱且温度低于878℃时,发生氧化放热反应,减缓降温速率,进而平抑吸热器表面温度波动。研究表明:涂层材料与黏结剂的质量比为4:3时附着力可达国家标准的最高级,太阳光加权平均吸收率达到94.93%;在950℃恒温老化500 h、冷热交变老化100次循环以及氧化还原反应试验200次循环后,涂层加权平均吸收率仅分别衰减0.82百分点、0.98百分点和2.61百分点,且附着力保持在最高级;在±9.7 kW/m~2的聚光辐射能流突变条件下,前100 s升温和降温速率分别降低59.66%和67.09%,升温和降温20℃所需的时间分别延长182.50%和438.60%。锰基热化学涂层表现出优秀的抗老化性能,并能有效平抑吸热器的温度波动,在塔式光热布雷顿循环系统中具有广阔的应用前景。
关键词(KeyWords): 热化学材料;涂层;太阳能吸热器;热防护
基金项目(Foundation): 内蒙古自治区“揭榜挂帅”项目(2024JBGS0026);; 国家杰出青年基金项目(52325605)~~
作者(Author): 张添,刘静,孙田津,石丽萍,胡锐,帅威,何艺彬,祝培旺,肖刚
DOI: 10.19666/j.rlfd.202503041
参考文献(References):
- [1]肖刚,倪明江,岑可法,等.太阳能[M].北京:中国电力出版社, 2019:64-66.XIAO Gang, NI Mingjiang, CEN Kefa, et al. Solar energy[M]. Beijing:China Electric Power Press, 2019:64-66.
- [2]王鼎,时雨,胡婧婷,等.太阳能热发电技术综述及其在我国适用性分析[J].电网与清洁能源, 2016, 32(9):151-156.WANG Ding, SHI Yu, HU Jingting, et al. Review and applicability analysis of solar thermal power generation technology in China[J]. Power System and Clean Energy,2016, 32(9):151-156.
- [3]JELLEY N, SMITH T. Concentrated solar power:recent developments and future challenges[J]. Journal of Power and Energy, 2015, 229(7):693-713.
- [4]高博,卢卫青,罗亚桥,等.光伏与光热发电发展前景对比分析[J].电源技术, 2017, 41(7):1104-1106.GAO Bo, LU Weiqing, LUO Yaqiao, et al. Comparative analysis of development prospect of photovoltaic generation and photo-thermal generation[J]. Chinese Journal of Power Sources, 2017, 41(7):1104-1106.
- [5]袁炜东.国内外太阳能光热发电发展现状及前景[J].电力与能源, 2015, 36(4):487-490.YUAN Weidong. Current development and prospect of solar thermal power generation in China and abroad[J].Electric Power and Energy, 2015, 36(4):487-490.
- [6]国家太阳能光热产业技术创新战略联盟.中国太阳能热发电行业蓝皮书2024[R/OL].(2025-01-13)[2025-03-01]. http://www.cnste.org/plus/view.php?aid=14644.China Solar Thermal Alliance. Blue book of China’s solar thermal power industry 2024[R/OL].(2025-01-13)[2025-03-01]. http://www.cnste.org/plus/view.php?aid=14644.
- [7]王驿凯,赵栋霖,杨曙川,等.区域能源系统中热泵储能技术研究与应用综述[J].东南大学学报(自然科学版), 2025, 55(3):839-848.WANG Yikai, ZHAO Donglin, YANG Shuchuan, et al.Review of pumped thermal energy storage technology and application in district energy systems[J]. Journal of Southeast University(Natural Science Edition), 2025,55(3):839-848.
- [8]SHUAI W, XU H, LUO B, et al. Multi-objective optimizations of solar receiver based on deep learning strategy in different application scenarios[J]. Solar Energy, 2024, 267:112201.
- [9]聂婧.塔式太阳能高温集热系统性能优化及运行策略研究[D].杭州:浙江大学, 2023:126-129.NIE Jing. Performance optimization and operation strategy of solar tower high-temperature heat collection system[D]. Hangzhou:Zhejiang University, 2023:126-129.
- [10]祝大龙,陈宇轩,张燕平.太阳能高温腔式吸热器在典型运行工况下的传热与应力分析[J].动力工程学报,2025, 45(1):54-61.ZHU Dalong, CHEN Yuxuan, ZHANG Yanping. Heat transfer and stress analysis of a solar high temperature cavity receiver under typical operating conditions[J].Journal of Chinese Society of Power Engineering, 2025,45(1):54-61.
- [11]李军,张鹏,聂立,等.塔式太阳能聚热发电系统镜场天空云运动估计研究[J].电网与清洁能源, 2017,33(8):132-138.LI Jun, ZHANG Peng, NIE Li, et al. Mirror field cloud motion estimation for tower solar power thermal system[J]. Power System and Clean Energy, 2017, 33(8):132-138.
- [12]冯蕾,肖刚,郭磊,等.云遮档条件下熔融盐吸热管防护的数值模拟[J].中国电力, 2020, 53(11):220-226.FENG Lei, XIAO Gang, GUO Lei, et al. Numerical simulations on the protection of the molten salt thermal tube under cloud occlusion[J]. Electric Power, 2020,53(11):220-226.
- [13]郭磊,董良怀,徐有杰,等.太阳能熔盐吸热器热防护特性研究[J].能源工程, 2020(2):42-47.GUO Lei, DONG Lianghuai, XU Youjie, et al. Research on thermal protection characteristics of solar molten salt receiver[J]. Energy Engineering, 2020(2):42-47.
- [14]PORTILLA-NIETO Y, TORRE F, KAESS J, et al. Active thermochemical barrier coatings using metal oxides:first experimental results[J]. Langmuir, 2024, 40:10534-10543.
- [15]YUAN P, GU C, XU H, et al. Regulating thermochemical redox temperature via oxygen defect engineering for protection of solar molten salt receivers[J]. i Science,2021, 24(9):103039.
- [16]周志伟.塔式太阳能热发电聚光集热系统优化与涂层老化试验研究[D].杭州:浙江大学, 2022:52-54.ZHOU Zhiwei. Study on optimization of tower solar thermal power concentrator heat collection system and coating aging test[D]. Hangzhou:Zhejiang University,2022:52-54.
- [17]BOUBAULT A, HO C K, HALL A, et al. Durability of solar absorber coatings and their cost-effectiveness[J].Solar Energy Materials&Solar Cells, 2017, 166:176-184.
- [18]TORRES J F, ELLIS I, COVENTRY J. Degradation mechanisms and non-linear thermal cycling effects in a high-temperature light-absorber coating[J]. Solar Energy Materials and Solar Cells, 2020, 218:110719.
- [19]NOC L, SEST E, KAPUN G, et al. High-solarabsorptance CSP coating characterization and reliability testing with isothermal and cyclic loads for service-life prediction[J]. Energy&Environmental Science, 2019,12(5):1679-1694.
- [20]SAHAR H, JUAN T, MAHDIAR T, et al. Long-term thermal stability and failure mechanisms of Pyromark2500 for high-temperature solar thermal receivers[J].Solar Energy Materials and Solar Cells, 2022, 246:111898.
- [21]邵娜.基于Mn2O3/Mn3O4体系的太阳能储能材料物理化学特性研究[D].杭州:浙江大学, 2019:18-27.SHAO Na. Research on physical and chemical characteristics of solar energy storage materials based on Mn2O3/Mn3O4 system[D]. Hangzhou:Zhejiang University, 2019:18-27.
- [22]XIANG D, GU C, XU H, et al. Self-assembled structure evolution of Mn-Fe oxides for high temperature thermochemical energy storage[J]. Small, 2021, 17:2101524.
- [23]WOKON M, BLOCK T, NICOLAI S, et al.Thermodynamic and kinetic investigation of a technical grade manganese-iron binary oxide for thermochemical energy storage[J]. Solar Energy, 2017, 153:471-485.
- [24]色漆和清漆划格试验:GB/T 9286—2021[S].北京:中国标准出版社, 2021:2.Paint pigment:paints and varnishes-cross-cut test:GB/T9286—2021[S]. Beijing:Standards Press of China,2021:2.
- [25]Standard test method for solar absorptance, reflectance,and transmittance of materials using integrating spheres:ASTM E903—12[S]. Commonwealth of Pennsylvania:ASTM International, 2012.
- [26]Standard tables for reference solar spectral irradiances:direct normal and hemispherical on 37°tilted surface:ASTM G173—03[S]. Commonwealth of Pennsylvania:ASTM International, 2003.
- [27]National Renewable Energy Laborator y(NREL).NSRDB:national solar radiation database[EB/OL].(2021-01-01)[2025-02-28]. https://nsrdb.nrel.gov/dataviewer.