直接空气碳捕集耦合二氧化碳光、热、电转化技术研究进展Research progress on the technology of direct air carbon capture coupled with carbon dioxide photo-thermo-electric conversion
柳待,王宇旸,吴嘉僖,吴宛霖,王腾,熊卓,刘婧,赵永椿,张军营
摘要(Abstract):
直接空气碳捕集(direct air capture,DAC)技术作为典型的负碳排放技术,是实现碳中和目标的关键技术之一,但是其依然面临高成本、高能耗问题。DAC技术与碳利用技术的深度耦合,将捕集的CO_2转化为高附加值产品,可提升碳减排效率并降低全过程成本,在碳中和路径中具有重要价值。介绍了DAC技术的分类和原理,综述了DAC技术与CO_2光、电、热转化技术耦合的研究进展和主要挑战,最后展望了DAC技术与碳利用技术深度耦合的应用前景和发展方向。
关键词(KeyWords): 直接空气碳捕集;CO_2光、电、热转化;深度耦合;研究进展
基金项目(Foundation): 国家重点研发计划项目(2021YFF0601000);; 武汉市科技计划项目(2023020302020572)~~
作者(Author): 柳待,王宇旸,吴嘉僖,吴宛霖,王腾,熊卓,刘婧,赵永椿,张军营
DOI: 10.19666/j.rlfd.202504034
参考文献(References):
- [1] SUTHERLAND B R. Pricing CO2 direct air capture[J].Joule, 2019, 3(7):1571-1573.
- [2] IPCC. Climate change 2021:the physical science basis:contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press,2021:1.
- [3] IPCC. Climate change 2022:impacts, adaptation, and vulnerability. contribution of working group ii to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press, 2022:1.
- [4] IPCC. Climate change 2023:mitigation of climate change:contribution of Working Group III to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press, 2023:1.
- [5] LACKNER K S. A guide to carbon dioxide sequestration[J]. Science, 2003, 300(5626):1677-1682.
- [6] KEITH D W. Why capture CO2 from the atmosphere?[J].Science, 2009, 325:1654-1655.
- [7] SOCOLOW R M. Can we bury global warming?[J].Scientific American, 2005, 292(1):49-55.
- [8] TIAN, YI Y. Coupling direct atmospheric CO2 capture with photocatalytic CO2 reduction for highly efficient C2H6 production[J]. Nano Letters, 2023, 23:10914-10921.
- [9] REALMONTE G, DROUET L, GAMBHIR A, et al. An inter-model assessment of the role of direct air capture in deep mitigation pathways[J]. Nature Communications,2019, 10(1):3277.
- [10]郭李娜,李睿哲,孙闯,等.层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响[J].物理化学学报, 2025, 41(1):74-84.GUO Lina, LI Ruizhe, SUN Chuang, et al. Influence of interlayer anions in layered double hydroxides on the photothermal catalytic CO2 methanation reaction over the derived Ni-Al2O3 catalyst[J]. Acta Physico-Chimica Sinica, 2025, 41(1):74-84.
- [11] JEONG-POTTER C, ABDALLAH M, KOTA S, et al.Enhancing the CO2 adsorption capacity of γ-Al2O3supported alkali and alkaline-earth metals:impacts of dual function material(DFM)preparation methods[J].Industrial&Engineering Chemistry Research, 2022, 61:10474-10482.
- [12] LIU L, ZHAO C, XU J, et al. Integrated CO2 capture and photocatalytic conversion by a hybrid adsorbent/photocatalyst material[J]. Applied Catalysis B:Environmental, 2015, 179:489-499.
- [13] ZHAO Z Y, DORONKIN D E, YE Y H, et al.Enhancement of photothermal CO2 hydrogenation over Pt/Al2O3 by light irradiation[J]. Chinese Journal of Catalysis, 2020, 41(2):1288.
- [14] RABIEE H, YAN P, WANG H, et al. Electrochemical CO2 reduction integrated with membrane/adsorptionbased CO2 capture in gas-diffusion electrodes and electro-lytes[J]. EcoEnergy, 2024, 2(1):3-21.
- [15] ALISSANDRATOS A, EASTON C J. Biocatalysis for the application of CO2 as a chemical feedstock[J]. The Beilstein Journal of Organic Chemistry, 2015, 11:2370-2387.
- [16] FRIEDLINGSTEIN P, ANDREW R M, ROGELJ J, et al.Persistent growth of CO2 emissions and implications for reaching climate goals[J]. Nature Climate Change, 2019,9(1):30-36.
- [17] IPCC. Special report on global warming of 1.5℃[M].Cambridge:Cambridge University Press, 2018:1.
- [18] BENSON M, COLE R. CO2 sequestration in deep sedimentary formations[J]. Energy&Environmental Science, 2008, 1(1):25-36.
- [19] HERZOG H J, DRAKE E M, ADAMS E E. An overview of CO2 capture technologies[J]. Energy, 2004, 29(9/10):1483-1513.
- [20] XU Q. Selective and efficient capture of CO2 from air by a nanoporous metal-organic framework[J]. Science,2012, 335(6068):1606-1610.
- [21] LUEBKE D R. Highly efficient, reversible CO2 capture materials based on amino-functionalized mesoporous silica[J]. Journal of the American Chemical Society,2008, 130(10):3086-3077.
- [22]张柠涛,王茹洁,汪黎东.碳中和背景下直接空气捕碳(DAC)的技术发展和经济性评估[J].南方能源建设,2024, 11(5):15-25.ZHANG Ningtao, WANG Rujie, WANG Lidong.Technical development and economic evaluation of direct air capture(DAC)under the carbon neutrality back-ground[J]. Southern Energy Construction, 2024,11(5):15-25.
- [23] LI X. Design of solid adsorbents for efficient CO2capture[J]. Chemical Reviews Journal, 2018, 118(14):6522-6581.
- [24] ZHANG Y. High-capacity CO2 capture by a nanoporous metal-organic framework with open metal sites[J].Angewandte Chemie International Edition, 2010, 49(40):7132-7136.
- [25] SUMIDA K. CO2 capture in metal-organic frameworks[J]. Chemical Reviews Journal, 2012, 112(2):724-781.
- [26]陈健.有机胺吸收二氧化碳的热力学和动力学研究进展[J].化工学报, 2014(1):12-21.CHEN Jian. Research progress in thermodynamics and kinetics of carbon dioxide absorption by organic amines[J]. CIESC Journal, 2014(1):12-21.
- [27]吕碧洪.有机胺溶液吸收CO2的研究现状及进展[J].石油化工, 2011(8):803-809.LYU Bihong. Research status and progress of CO2absorption by organic amine solution[J]. Petrochemical Technology, 2011(8):803-809.
- [28]赵毅.有机胺法吸收二氧化碳的研究进展[J].再生资源与循环经济, 2020(7):26-29.ZHAO Yi. Research progress in absorption of carbon dioxide by organic amine method[J]. Renewable Resources and Circular Economy, 2020(7):26-29.
- [29]高红霞. N,N-二乙基乙醇胺(DEEA)溶液CO2吸收解吸性能的实验研究[J].化工学报, 2015(9):3739-3745.GAO Hongxia. Experimental study on CO2 absorption and desorption performance of N,N-diethyl ethanolamine(DEEA)solution[J]. CIESC Journal, 2015(9):3739-3745.
- [30] SUN Q, GAO H X, SEMA T, et al. Enhanced CO2desorption rate for rich amine solution regeneration over hierarchical HZSM-5 catalyst[J]. Chemical Engineering Journal, 2023, 469:143871.
- [31]赵伟,施耀,魏建文,等.甘氨酸钠溶液吸收CO2及再生实验研究[J].高校化学工程学报, 2008, 22(4):690-696.ZHAO Wei, SHI Yao, WEI Jianwen, et al. Experimental study on CO2 absorption and regeneration of sodium glycinate solution[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(4):690-696.
- [32]张彦星.金属有机框架化合物的合成[J].广东化工,2020, 47(3):87-88.ZHANG Yanxing. Synthesis of metal-organic frameworks[J]. Guangdong Chemical Industry, 2020,47(3):87-88.
- [33]周宏仓,肖旭,何都良,等. DBU-GAC型CO2吸附剂性能研究[J].中国电机工程学报, 2011, 31(35):78-83.ZHOU Hongcang, XIAO Xu, HE Duliang, et al.Performance research on CO2 adsorbent of DBU-GAC[J]. Proceedings of the CSEE, 2011, 31(35):78-83.
- [34]代钢,李金昊,杭咏平,等.多孔固体吸附剂的CO2吸附性能研究[J].应用化工, 2020, 49(11):2683-2687.DAI Gang, LI Jinhao, HANG Yongping, et al. Study on CO2 adsorption performance of porous solid adsorbents[J]. Applied Chemical Industry, 2020, 49(11):2683-2687.
- [35]范莎莎,沈辉,赵玉军,等.氧化钙吸附剂的制备及CO2吸附性能[J].化学工业与工程, 2016, 33(4):343-348.FAN Shasha, SHEN Hui, ZHAO Yujun, et al. Preparation of calcium oxide adsorbent and its CO2 adsorption performance[J]. Chemical Industry and Engineering,2016, 33(4):343-348.
- [36]王正义,唐美,张冰姿,等.碳酸钙还原低热耦合与CO2绿色原位转化[J].化学试剂, 2024, 46(6):595-601.WANG Zhengyi, TANG Mei, ZHANG Bingzi, et al.Low-temperature coupling of calcium carbonate reduction and green in-situ CO2 conversion[J]. Chemical Reagents, 2024, 46(6):595-601.
- [37] LIU Z X, LU Y L, WANG C F, et al. MOF-derived nano CaO for highly efficient CO2 fast adsorption[J]. Fuel,2023, 345:127001.
- [38]任颜卫,李嘉伟,江焕峰.金属有机框架材料在CO2化学固定中的应用[J].化学进展, 2019, 31(10):1559-1573.REN Yanwei, LI Jiawei, JIANG Huanfeng. Application of metal-organic framework materials in CO2 chemical fixation[J]. Progress in Chemistry, 2019, 31(10):1559-1573.
- [39]沈意,许俊杰,朱超,等.缺陷化金属有机骨架材料的合成及其污染控制应用[J].科学通报, 2021, 66(23):3087-3097.SHEN Yi, XU Junjie, ZHU Chao, et al. Synthesis of defective metal-organic frameworks and their applications in pollution control[J]. Chinese Science Bulletin, 2021, 66(23):3087-3097.
- [40]徐群娜,仇瑞杰,马建中.聚合物基MOFs复合材料的制备及应用[J].材料导报, 2020, 34(15):58-63.XU Qunna, QIU Ruijie, MA Jianzhong. Synthesis and application of polymer-based MOFs composites[J].Materials Review, 2020, 34(15):58-63.
- [41] NUGENT P, BELMABKHOUT Y, BURD S, et al.Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation[J].Nature, 2013, 495:80-84.
- [42] DIDAS S A, CHOI S, CHAIKITTISILP W, et al. Amineoxide hybrid materials for CO2 capture from ambient air[J]. Accounts of Chemical Research Journal, 2015,48(10):2680-2687.
- [43] RAO M S, NAGESWARAN G. Metal organic frameworks for CO2 capture[J]. Chemical Engineering Journal, 2023, 469:143871.
- [44]郝博,唐一桐,李雪霏,等.金属有机框架衍生物的制备及催化性能的研究进展[J].材料导报, 2020, 34(11):100-105.HAO Bo, TANG Yitong, LI Xuefei, et al. Synthesis of metal-organic framework derivatives and research progress in their catalytic performance[J]. Materials Review, 2020, 34(11):100-105.
- [45]何利梅,姜伟丽,李继聪,等. CO2吸附材料的研究进展[J].石油化工, 2022, 51(1):83-91.HE Limei, JIANG Weili, LI Jicong, et al. Research progress in CO2 adsorption materials[J]. Petrochemical Technology, 2022, 51(1):83-91.
- [46]陈久弘,王毅,王恺华,等.二氧化碳捕集用吸附分离技术及其吸附材料研究进展[J].低碳化学与化工,2023, 5(1):83-91.CHEN Jiuhong, WANG Yi, WANG Kaihua, et al.Research progress in adsorptive separation technology and adsorption materials for carbon dioxide capture[J].Low Carbon Chemistry and Chemical Engineering,2023, 5(1):83-91.
- [47] GUNAWARDENE O H P, GUNATHILAKE C,VIKRANT K, et al. CO2 capture through physical and chemical adsorption using porous carbon materials:a review[J]. Atmosphere, 2022, 3(3):1-20.
- [48]李怡萌,张玲,马雷,等.多孔高分子材料对二氧化碳的捕获与转化[J].高分子通报, 2018, 6(6):231-242.LI Yimeng, ZHANG Ling, MA Lei, et al. CO2 capture and conversion by porous polymer materials[J]. Polymer Bulletin, 2018, 6(6):231-242.
- [49]杨永杰,刘璇,杨超,等.金属有机框架材料室温可逆吸附H2S的关键特性研究[J].胶体与界面科学A辑:物理化学与工程, 2023, 670:131561.YANG Yongjie, LIU Xuan, YANG Chao, et al. Study on the essential features for MOFs to reversible adsorption of H2S at room temperature[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 670:131561.
- [50] ZHAO H Y, BAHAMON D, KHALEEL M, et al.Insights into the performance of hybrid graphene oxide/MOFs for CO2 capture at process conditions by molecular simulations[J]. Chemical Engineering Journal,2022, 446:136932.
- [51] ZHANG L X, SUN Q, SU T, et al. MOF-erived 3D porous carbon aerogels as an efficient adsorbent for toluene in humid air[J]. Journal of Environmental Chemical Engineering, 2021, 9(6):106722.
- [52] OCHEDI F O, YU J L, YU H, et al. CO2 capture using liquid absorption methods:a review[J]. Environmental Chemistry Letters, 2020, 18(1):1-25.
- [53] LI Z H, YUAN Y, WU H, et al. Investigation of MOF-derived humidity-proof hierarchical porous carbon frameworks as highly-selective toluene absorbents and sensing materials[J]. Journal of Hazardous Materials,2021, 412:125234.
- [54]廖昌建,张可伟,王晶,等.直接空气捕集二氧化碳技术研究进展[J].化工进展, 2024, 43(4):1-15.LIAO Changjian, ZHANG Kewei, WANG Jing, et al.Research progress in direct air capture of CO2[J].Chemical Industry and Engineering Progress, 2024,43(4):1-15.
- [55] SINHA A, REALFF M J. Parametric study on the techno-economics of direct CO2 air capture systems using solid sorbents[J]. AIChE Journal, 2019, 65(7):2567-2578.
- [56] ZHENG J F, CHEN X P, MA J L. Advances in solid adsorbent materials for direct air capture of CO2[J].Clean Energy Science and Technology, 2023(2):1-15.
- [57] ZHANG X, LIN R B, WANG J, et al. Optimization of the pore structures of MOFs for record high hydrogen volumetric working capacity[J]. Advanced Materials,2020, 32(17):1-10.
- [58] AN K J, LI K, YANG C M, et al. Direct air capture with amino acid solvent:operational optimization using a crossflow air-liquid contactor[J]. AIChE Journal, 2024,70(6):1-10.
- [59]周爱国,余晓洁,贺红旭,等.直接空气捕碳(DAC)的成本评估预测及其影响因素[J].洁净煤技术, 2024,30(10):1-10.ZHOU Aiguo, YU Xiaojie, HE Hongxu, et al. Cost evaluation and prediction of direct air capture(DAC)and its influencing factors[J]. Clean Coal Technology, 2024,30(10):1-10
- [60]武洁.胺溶液吸收CO2的量子化学分析[J].工程热物理学报, 2015, 36(3):668-672.WU Jie. Quantum chemical analysis of CO2 absorption in amine solutions[J]. Journal of Engineering Thermo-physics, 2015, 36(3):668-672.
- [61]余青霓,斯文婷,杨彬,等.密闭空间低浓度CO2固态胺吸附剂长寿命评价[J].化工学报, 2015, 66(9):3692-3697.YU Qingni, SU Wenting, YANG Bin, et al. Long-term life evaluation of solid amine adsorbents for low-concentration CO2 in enclosed spaces[J]. CIESC Journal, 2015, 66(9):3692-3697.
- [62] YOUNG J, MCILWAINE F, GARCIA-DIEZ E, et al.Towards benchmarking and advancing solid-sorbent direct air capture[C]//Proceedings of the 16th Greenhouse Gas Control Technologies Conference(GHGT-16), 2022.
- [63]孔祥如,张肖阳,孙鹏翔,等.直接空气捕碳固体多孔材料的研究进展[J].化工进展, 2023, 42(3):1471-1483.KONG Xiangru, ZHANG Xiaoyang, SUN Pengxiang, et al. Research progress on solid porous materials for direct air capture of CO2[J]. Chemical Industry and Engineering Progress, 2023, 42(3):1471-1483.
- [64] SINHA A, REALFF M J. Parametric study on the techno-economics of direct CO2 air capture systems using solid adsorbents[J]. AIChE Journal, 2019, 65(9):e16607.
- [65]何志军,苗诒贺,王耀祖,等.混合胺功能化SBA-15空气碳捕集吸附剂性能研究[C].第一届全国碳中和与绿色发展大会.中国深圳, 2021.HE Zhijun, MIAO Yihe, WANG Yaozu, et al.Performance study of mixed amine-functionalized SBA-15 adsorbents for air carbon capture[C]. 1st National Conference on Carbon Neutrality and Green Development. Shenzhen, China, 2021.
- [66]徐志明,王颖聪,郜时旺,等.碳酸钾溶液捕集CO2的吸收热研究[J].中国电机工程学报, 2015, 35(9):2254-2260.XU Zhiming, WANG Yingcong, GAO Shiwang, et al.Study on the absorption heat of CO2 capture by potassium carbonate solution[J]. Proceedings of the CSEE, 2015, 35(9):2254-2260.
- [67]徐永辉,肖宝华,冯艳艳,等.二氧化碳捕集材料的研究进展[J].精细化工, 2021, 38(8):1513-1521.XU Yonghui, XIAO Baohua, FENG Yanyan, et al.Research progress of carbon dioxide capture materials[J].Fine Chemicals, 2021, 38(8):1513-1521.
- [68]徐文佳.二氧化碳捕集研究进展及对策建议[J].绿色科技, 2013, 15(1):60-63.XU Wenjia. Research progress and countermeasures for carbon dioxide capture[J]. Journal of Green Science and Technology, 2013, 15(1):60-63.
- [69] LEE S C, CHOI B Y, LEE T J, et al. CO2 absorption and regeneration of alkali metal solid sorbents[J]. Catalysis Today, 2006, 3a4:1-6.
- [70] CUI S, LI S, DENG R, et al. Progress in Cu-based electrocatalysts for electrochemical CO2 reduction to C2+products[J]. Catalysis Science&Technology, 2024,14(10):2697-2716.
- [71]唐兰勤,贾茵,朱志尚,等.光催化二氧化碳还原研究进展[J].物理学进展, 2021, 41(6):254-263.TANG Lanqin, JIA Yin, ZHU Zhishang, et al. Research progress in photocatalytic CO2 reduction[J]. Progress in Physics, 2021, 41(6):254-263.
- [72] ZHANG Y. Iron-porphyrin catalysts for CO2-to-methanol conversion[J]. Nature Catalysis, 2024, 7(3):234-245.
- [73] ASHOK J, PATI S, HONGMANOROM P, et al. A review of recent catalyst advances in CO2 methanation processes[J]. Catalysis Today, 2020, 356:471-489.
- [74]刘旭升,李泽洋,杨宇森,等.电催化CO2还原制备气态产物的研究进展[J].化工学报, 2024, 75(7):2385-2408.LIU Xusheng, LI Zeyang, YANG Yusen, et al. Research progress in electrocatalytic CO2 reduction for gaseous products[J]. CIESC Journal, 2024, 75(7):2385-2408.
- [75] ZHENG H, YANG Z W, KONG X D, et al. Progresses on carbon dioxide electroreduction into methane[J].Chinese Journal of Catalysis, 2022, 43:1634-1641.
- [76] NREL. Integrated DAC and photocatalytic CO2conversion[R]. 2023:1
- [77] ZHANG K, GOSWAMI S, NOH H, et al. An iron-porphyrin grafted metal-organic framework as a heterogeneous catalyst for the photochemical reduction of CO2[J]. Journal of Photochemistry and Photobiology,2022, 10:100111.
- [78] NIMMAS T, WONGSAKULPHASATCH S, CHANTHANUMATAPORN M, et al. Thermochemical transformation of CO2 into high-value products[J]. Current Opinion in Green and Sustainable Chemistry, 2024, 47:100911.
- [79] KAR S, KIM D, MOHAMAD ANNUR A R B, et al.Direct air capture of CO2 for solar fuel production in flow[J]. Nature Energy, 2025, 10:448-459.
- [80] FAN J X, YUE X X, LIU Y N, et al. An integration system derived from LDHs for CO2 direct capture and photocatalytic coupling reaction[J]. Chem Catalysis,2022, 2(3):531-549.
- [81] TIAN Y X, WANG R H, DENG S M, et al. Coupling direct atmospheric CO2 capture with photocatalytic CO2reduction for highly efficient C2H6 production[J]. Nano Letters Journal, 2023, 23(23):10914-10921.
- [82] LIU L, ZHAO C, XU J, et al. Integrated CO2 capture and photocatalytic conversion by a hybrid adsorbent/photo-catalyst material[J]. Applied Catalysis B:Environmental, 2015, 179:489-499.
- [83] MA W, SUN J, YAO S, et al. Synergistic interplay of dual-active-sites on metallic Ni-MOFs loaded with Pt for thermal-photocatalytic conversion of atmospheric CO2under infrared light irradiation[J]. Angewandte Chemie International Edition, 2023, 62(48):e202313784.
- [84]韩布兴.直接和间接Z-型异质结耦合的高效CO2光催化还原系统[J].物理化学学报, 2021, 37(5):2011071.HAN Buxing. Efficient CO2 photocatalytic reduction system coupling direct and indirect Z-scheme hetero-junctions[J]. Acta Physico-Chimica Sinica, 2021,37(5):2011071
- [85] TIAN C, LIU X, LIU C, et al. Air to fuel:direct capture of CO2 from air and in-situ solar-driven conversion into syngas via Nix/NaA nanomaterials[J]. Nano Research,2023, 16(8):10899-10912.
- [86] VESELOVSKAYA J V, PARUNIN P D, NETSKINA O V, et al. A novel process for renewable methane production:combining direct air capture by K2CO3/alumina sorbent with CO2 methanation over Ru/alumina catalyst[J]. Topics in Catalysis, 2018, 61:1528-1536.
- [87] JEONG-POTTER C, ABDALLAH M, SANDERSON C,et al. Dual function materials(Ru+Na2O/Al2O3)for direct air capture of CO2 and in situ catalytic methanation:the impact of realistic ambient conditions[J]. Applied Catalysis B:Environment and Energy, 2022, 307:120990.
- [88] HE J H, WANG T J, BI X Q, et al. Subsurface A-site vacancy activates lattice oxygen in perovskite ferrites for methane anaerobic oxidation to syngas[J]. Nature Communications, 2024, 15:5422.
- [89] GUO Z L, BIAN X L, DU Y B, et al. Recent advances in integrated carbon dioxide capture and methanation technology[J]. Journal of Fuel Chemistry and Technology, 2023, 51:293-302.
- [90]刘泽洪,孟婧,张瑾轩,等.电-氢-碳耦合促进新能源基地开发模式研究[J].全球能源互联网, 2024, 7(5):473-491.LIU Zehong, MENG Jing, ZHANG Jinxuan, et al.Research on the development mode of new energy bases promoted by electricity-hydrogen-carbon coupling[J].Global Energy Interconnection, 2024, 7(5):473-491.
- [91] ZHU C, SONG Y F, DONG X, et al. Ampere-level CO2reduction to multicarbon products over a copper gas penetration electrode[J]. Energy&Environmental Science, 2022, 15:5391-5404.
- [92] XIAO Y C, SUN S S, ZHAO Y, et al. Reactive capture of CO2 via amino acid[J]. Nature Communications, 2024,15:7849.
- [93] JOHNSON M, WILLIAMS C, TAYLOR J. Experimental study on the effect of different adsorbent supports on the adsorption performance of solid DAC adsorbents[J].Journal of Materials Science, 2023, 58(9):3456-3465.