华瀛液化天然气接收站冷能梯级利用工艺设计及能效优化Research on cold energy cascade utilization process design and energy efficiency optimization for Huaying LNG receiving station
黄华,周万伟,季炫宇,袁志超,周雄,欧阳顺,李巳聪,杨鲁
摘要(Abstract):
基于广东华瀛液化天然气(LNG)接收站的设计运行条件和周边产业环境,首先设计了一套热机循环发电耦合浅冷冻库的LNG冷能梯级利用方案,并采用专业软件HYSYS建模求解流程中的关键参数,以提升能效和大规模消纳冷能为目标,对原有方案进一步优化改进。结果表明:在全年最低气化日LNG外输量为228 t/h的条件下,原方案采用一级热机循环与冻库结合,年发电量超过3 283×10~4 k W·h,并满足了7 500 m~3冻库的冷负荷需求;而优化设计后的新方案采用“两级热机循环-浅冷冻库”设计,通过提升热源温度,并改用质量分数40%乙烷和60%丙烷的混合工质,使热机循环系统的设计年发电量可提升至6 204×10~4 kW·h,单位质量LNG的净发电量从原先的17.54(kW·h)/t增加到33.02(kW·h)/t,还可节约约5 364.1万元/年电费。尽管多级的热机循环能够减少温差造成的不可逆损失,但考虑投入产出比及运行可靠性等因素,第二方案能与华瀛LNG接收站实际条件紧密结合,具有较好的工程可行性和经济性。上述2种冷能梯级利用设计方案各有优势,适用于接收站的不同发展阶段和LNG冷能利用的不同评价指标,为华瀛LNG接收站全面投产后的冷能利用提供了有益参考。
关键词(KeyWords): 液化天然气;冷能梯级利用;热机循环;能效优化;经济性评价
基金项目(Foundation):
作者(Author): 黄华,周万伟,季炫宇,袁志超,周雄,欧阳顺,李巳聪,杨鲁
DOI: 10.19666/j.rlfd.202502121
参考文献(References):
- [1]渠沛然.国内LNG市场发展势头足[N].中国能源报.2024-03-04(08).QU Peiran. Domestic LNG market shows strong development momentum[N]. China Energy News, 2024-03-04(08).
- [2]吴小华,蔡磊,李庭宇,等. LNG冷能利用技术的最新进展[J].油气储运, 2017, 36(6):624-635.WU Xiaohua, CAI Lei, LI Tingyu, et al. Latest progress in LNG cold energy utilization technology[J]. Oil&Gas Storage and Transportation, 2017, 36(6):624-635.
- [3]李俊,陈煜. LNG冷能回收及梯级利用研究进展[J].制冷学报, 2022, 43(2):1-12.LI Jun, CHEN Yu. Research progress on LNG cold energy recovery and cascaded utilization[J]. Journal of Refrigeration, 2022, 43(2):1-12.
- [4]中国能源新闻网.中国石化在广东首座LNG接收站正式投用[EB/OL].(2024-09-10)[2025-02-01]. https://www.cpnn.com.cn/news/yq/202409/t20240910_1735195.html.China Energy News Network. The first LNG receiving station of Sinopec in Guangdong is officially put into use[EB/OL].(2024-09-10)[2025-02-01]. https://www.cpnn.com.cn/news/yq/202409/t20240910_1735195.html.
- [5]王荧光,蔡东旭,梁勇,等.循环工质对LNG冷能发电系统性能的影响[J].低碳化学与化工, 2024, 49(10):119-128.WANG Yingguang, CAI Dongxu, LIANG Yong, et al. The impact of working fluid on the performance of LNG cold energy power generation system[J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(10):119-128.
- [6] KANBUR B B, XIANG L, DUBEY S, et al. Finite sum based thermoeconomic and sustainable analyses of the small scale LNG cold utilized power generation systems[J]. Applied Energy, 2018, 220:944-961.
- [7] KIM J, NOH Y, CHANG D. Storage system for distributed-energy generation using liquid air combined with liquefied natural gas[J]. Applied Energy, 2018, 212:1417-1432.
- [8] HOU M, WU Z, YU G, et al. A thermoacoustic stirling electrical generator for cold exergy recovery of liquefied natural gas[J]. Applied Energy, 2018, 226:389-396.
- [9] LI Y, ZHANG G, LIU Y, et al. A cold and power cogeneration system utilizing LNG cryogenic energy and low-temperature waste heat[J]. Energy Procedia, 2019,158:2335-2340.
- [10]SHINGAN B, VIJAY P, PANDIAN K. Advanced design of power generation cycle with cold utilization from LNG[J]. Arabian Journal for Science and Engineering,2023, 48(12):16973-16988.
- [11]曾丽瑶. LNG冷能发电技术及ORC工质优选研究[J].四川化工, 2021, 24(2):22-24.ZENG Liyao. Research on LNG cold energy power generation technology and ORC working fluid optimization[J]. Sichuan Chemical Industry, 2021, 24(2):22-24.
- [12]吕剑雄,王北福,聂立宏,等.液化天然气(LNG)冷能发电方法比较和研究[J].农村经济与科技, 2017,28(13):270-273.LYU Jianxiong, WANG Beifu, NIE Lihong, et al.Comparison and research on LNG cold energy power generation methods[J]. Rural Economy and Technology,2017, 28(13):270-273.
- [13]江蓉,向润清,赖勇杰,等.用于冰雪世界的LNG冷能换冷站技术分析[J].天然气化工(C1化学与化工),2022, 47(5):120-124.JIANG Rong, XIANG Runqing, LAI Yongjie, et al.Technical analysis of LNG cold energy heat exchange station for snow and ice world[J]. Natural Gas Chemical Industry(C1 Chemistry and Chemical Engineering),2022, 47(5):120-124.
- [14]许海超,王大伟. LNG冷能用于冷库、制冰技术及经济分析[J].化学工业, 2022, 40(1):66-68.XU Haichao, WANG Dawei. Technical and economic analysis of using LNG cold energy for cold storage and ice-making[J]. Chemical Industry, 2022, 40(1):66-68.
- [15]沈维道,童钧耕.工程热力学[M]. 5版.北京:高等教育出版社, 2016:1.SHEN Weidao, TONG Jungeng. Engineering thermodynamics[M]. 5th ed. Beijing:Higher Education Press, 2016:1.
- [16]闫玮祎,秦锋,陈锐莹,等.低温有机朗肯循环冷能发电在LNG接收站的应用[J].煤气与热力, 2019, 39(6):20-24.YAN Weiwei, QIN Feng, CHEN Ruiying, et al.Application of low-temperature organic Rankine cycle cold energy power generation in LNG receiving station[J]. Gas&Heat, 2019, 39(6):20-24.
- [17]黄宇,刘梦溪,陈海平,等.“双碳”背景下液化天然气工业园区能源耦合技术研究[J].现代化工, 2023,43(3):213-216.HUANG Yu, LIU Mengxi, CHEN Haiping, et al. Research on energy coupling technology of liquefied natural gas industrial parks under the“dual-carbon” background[J].Modern Chemical Industry, 2023, 43(3):213-216.
- [18]张超,金海刚,邵国芬,等. LNG冷能发电工质选择与参数优化[J].石油与天然气化工, 2015, 44(4):54-58.ZHANG Chao, JIN Haigang, SHAO Guofen, et al.Selection and parameter optimization of working fluid for LNG cold energy power generation[J]. Chemical Engineering of Oil&Gas, 2015, 44(4):54-58.
- [19]黄峰,周亚洲,李雅娴. LNG接收站冷能发电工艺参数优化设计[J].天然气化工(C1化学与化工), 2020,45(6):99-102.HUANG Feng, ZHOU Yazhou, LI Yaxian. Process parameter optimization design of LNG receiving station cold energy power generation[J]. Natural Gas Chemical Industry(C1 Chemistry and Chemical Engineering),2020, 45(6):99-102.
- [20] BAO J, LIN Y, ZHANG R, et al. Effects of stage number of condensing process on the power generation systems for LNG cold energy recovery[J]. Applied Thermal Engineering, 2017, 126:566-582.
- [21] BAO J, ZHANG R, LIN Y, et al. Simultaneous optimization of system structure and working fluid for the three-stage condensation Rankine cycle utilizing LNG cold energy[J]. Applied Thermal Engineering, 2018, 140:120-130.
- [22] SUN Z, LAI J, WANG S, et al. Thermodynamic optimization and comparative study of different ORC configurations utilizing the exergies of LNG and lowgrade heat of different temperatures[J]. Energy, 2018, 147:688-700.
- [23]豆少刚,李金波,文晓龙,等.基于LNG冷能发电的朗肯循环关键参数分析优化[J].山西化工, 2023,43(9):86-89.DOU Shaogang, LI Jinbo, WEN Xiaolong, et al. Analysis and optimization of key parameters of Rankine cycle based on LNG cold energy power generation[J]. Shanxi Chemical Industry, 2023, 43(9):86-89.
- [24]赵鹏飞,李瑞霞,李宏武. LNG接收站新型三级冷能发电循环优化方案[J].天然气化工(C1化学与化工),2022, 47(1):115-121.ZHAO Pengfei, LI Ruixia, LI Hongwu. Optimization scheme of a novel three-stage cold energy power generation cycle for LNG receiving terminal[J]. Natural Gas Chemical Industry(C1 Chemistry&Chemical Engineering), 2022, 47(1):115-121.
- [25]FERREIRO GARCíA R, CARBIA CARRIL J, ROMERO GOMEZ J, et al. Combined cascaded Rankine and direct expander based power units using LNG(liquefied natural gas)cold as heat sink in LNG regasification[J]. Energy,2016, 105:16-24.
- [26] CAI D, ZHAO Y, WANG Y, et al. Comparative analysis:exergetic and economic assessment of LNG cold energy power generation systems with different cold utilization methods[J]. Thermal Science and Engineering Progress,2024, 54:102844.
- [27]XUE F, CHEN Y, JU Y. Design and optimization of a novel cryogenic Rankine power generation system employing binary and ternary mixtures as working fluids based on the cold exergy utilization of liquefied natural gas(LNG)[J].Energy, 2017, 138:706-720.
- [28] BAO J, LIN Y, ZHANG R, et al. Strengthening power generation efficiency utilizing liquefied natural gas cold energy by a novel two-stage condensation Rankine cycle(TCRC)system[J]. Energy Conversion and Management,2017, 143:312-325.
- [29] ZHOU S, LIU X, BIAN Y, et al. Energy, exergy and exergoeconomic analysis of a combined cooling,desalination and power system[J]. Energy Conversion and Management, 2020, 218:113006.