电化学耦合燃煤烟气中二氧化碳与氮气合成尿素研究进展Research progress on electrochemical synthesis of urea from carbon dioxide and nitrogen in coal-fired flue gas
房孝维,孙瑜,张光晋,张雪华,李兴华,张杰,朱树健
摘要(Abstract):
燃煤烟气中CO_2与N_2的高效资源化利用是推动能源系统低碳转型的重要途径。电化学法耦合烟气中CO_2与N_2直接合成尿素,可在温和条件下将温室气体转化为高附加值化肥,兼具碳减排与资源循环双重效益。系统综述了该领域近期进展,通过异质结、导电MOF等新型催化剂设计优化反应路径,实现N_2与CO_2协同活化及C-N偶联效率提升,最高尿素法拉第效率达48%;未来突破需聚焦仿生催化材料开发、光-电耦合系统集成以及绿电驱动下碳捕集-转化-产物分离一体化工艺创新;从技术原理、工程挑战及产业衔接层面,论证了电催化尿素合成在煤电碳氮协同治理中的关键作用,为推进其规模化应用提供前瞻性策略思考。
关键词(KeyWords): 燃煤烟气;电催化;尿素合成;CO_2利用;固氮
基金项目(Foundation): 西安热工研究院有限公司院研发基金项目(TD-24-TYK04)~~
作者(Author): 房孝维,孙瑜,张光晋,张雪华,李兴华,张杰,朱树健
DOI: 10.19666/j.rlfd.202503016
参考文献(References):
- [1]SHIH C F, ZHANG T, LI J H, et al. Powering the future with liquid sunshine[J]. Joule, 2018, 2(10):1925-1949.
- [2]MAO J J, IOCOZZIA J, HUANG J Y, et al. Graphene aerogels for efficient energy storage and conversion[J].Energy&Environmental Science, 2018, 11(4):772-799.
- [3]JACOBSON T A, KLER J S, HERNKE M T, et al. Direct human health risks of increased atmospheric carbon dioxide[J]. Nature Sustainability, 2019, 2(8):691-701.
- [4]RAKITA A, NIKOLI??N, MILDNER M, et al. Reepithelialization and immune cell behaviour in an ex vivo human skin model[J]. Scientific Reports, 2020, 10(1):1.
- [5]LIU Y Y, HUANG J R, ZHU H L, et al. Simultaneous capture of CO2 boosting its electroreduction in the micropores of a metal-organic framework[J]. Angewandte Chemie International Edition, 2023, 62(52):e202311265.
- [6]WANG M, WANG B Q, ZHANG J G, et al. Acidic media enables oxygen-tolerant electrosynthesis of multicarbon products from simulated flue gas[J]. Nature Communications, 2024, 15(1):1218.
- [7]ZHU P, WU Z Y, ELGAZZAR A, et al. Continuous carbon capture in an electrochemical solid-electrolyte reactor[J].Nature, 2023, 618(7967):959-966.
- [8]YAO S, JIANG S Y, WANG B F, et al. Polyoxometalate confined synthesis of BiVO4 nanocluster for urea production with remarkable O2/N2 tolerance[J]. Angewandte Chemie, 2025, 137(6):e202418637.
- [9]LIU C L, MA J C, WANG M T, et al. Electrocatalytic nitrate reduction using iron single atoms for sustainable ammonium supplies to increase rice yield[J]. Proceedings of the National Academy of Sciences, 2024, 121(50):e2408187121.
- [10]WAN Y C, ZHENG M Y, YAN W, et al. Fundamentals and rational design of heterogeneous C-N coupling electrocatalysts for urea synthesis at ambient conditions[J].Advanced Energy Materials, 2024, 14(28):2303588.
- [11]LUO Y T, XIE K, OU P F, et al. Selective electrochemical synthesis of urea from nitrate and CO2 via relay catalysis on hybrid catalysts[J]. Nature Catalysis, 2023, 6(10):939-948.
- [12]ZHAO Y L, DING Y X, LI W L, et al. Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu-W bimetallic C-N coupling sites[J]. Nature Communications, 2023, 14(1):4491.
- [13]XIONG H C, YU P P, CHEN K D, et al. Urea synthesis via electrocatalytic oxidative coupling of CO with NH3 on Pt[J]. Nature Catalysis, 2024, 7(7):785-795.
- [14]CHEN X Y, LV S N, GU H F, et al. Amorphous BismuthTin oxide nanosheets with optimized C-N coupling for efficient urea synthesis[J]. Journal of the American Chemical Society, 2024, 146(19):13527-13535.
- [15]CHEN C, ZHU X R, WEN X J, et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions[J]. Nature Chemistry, 2020, 12(8):717-724.
- [16]XUE Z H, SU H, YU Q Y, et al. Janus Co/CoP nanoparticles as efficient Mott-Schottky electrocatalysts for overall water splitting in wide pH range[J]. Advanced Energy Materials, 2017, 7(12):1602355.
- [17]HE K, TADESSETSEGA T, LIU X, et al. Utilizing the space-charge region of the FeNi-LDH/CoP p-n junction to promote performance in oxygen evolution electrocatalysis[J]. Angewandte Chemie International Edition,2019, 58(34):11903-11909.
- [18]YUAN M L, BAI Y L, ZHANG J X, et al. Work function regulation of nitrogen-doped carbon nanotubes triggered by metal nanoparticles for efficient electrocatalytic nitrogen fixation[J]. Journal of Materials Chemistry A,2020, 8(48):26066-26074.
- [19]YUAN M L, CHEN J W, BAI Y L, et al. Electrochemical C-N coupling with perovskite hybrids toward efficient urea synthesis[J]. Chemical Science, 2021, 12(17):6048-6058.
- [20]STEPHAN D W. Frustrated Lewis pairs:from concept to catalysis[J]. Accounts of Chemical Research, 2015, 48(2):306-316.
- [21]STEPHAN D W, ERKER G. Frustrated Lewis pair chemistry:development and perspectives[J]. Angewandte Chemie International Edition, 2015, 54(22):6400-6441.
- [22]STEPHAN D W. Frustrated Lewis Pairs[J]. Journal of the American Chemical Society, 2015, 137(32):10018-10032.
- [23]MELEN R L. A step closer to metal-free dinitrogen activation:a new chapter in the chemistry of frustrated Lewis pairs[J]. Angewandte Chemie International Edition, 2018, 57(4):880-882.
- [24]WANG L, KEHR G, DANILIUC C G, et al. Solid state frustrated Lewis pair chemistry[J]. Chemical Science,2018, 9(21):4859-4865.
- [25]DENG W Y, ZHANG L, LI LL, et al. Crucial role of surface hydroxyls on the activity and stability in electrochemical CO2 reduction[J]. Journal of the American Chemical Society, 2019, 141(7):2911-2915.
- [26]YANG P P, ZHAO Z J, CHANG X X, et al. The functionality of surface hydroxy groups on the selectivity and activity of carbon dioxide reduction over cuprous oxide in aqueous solutions[J]. Angewandte Chemie International Edition, 2018, 57(26):7724-7728.
- [27]IIJIMA G, INOMATA T, YAMAGUCHI H, et al. Role of a hydroxide layer on Cu electrodes in electrochemical CO2reduction[J]. ACS Catalysis, 2019, 9(7):6305-6319.
- [28]YUAN M L, CHEN J W, XU Y, et al. Highly selective electroreduction of N2 and CO2 to urea over artificial frustrated Lewis pairs[J]. Energy&Environmental Science, 2021, 14(12):6605-6615.
- [29]NASR A T, PONSARD L, NICOLAS E, et al. Catalytic challenges and strategies for the carbonylation ofσ-bonds[J]. Green Chemistry, 2021, 23(2):723-739.
- [30]YUAN M L, CHEN J W, ZHANG H H, et al. Host-guest molecular interaction promoted urea electrosynthesis over a precisely designed conductive metal-organic framework[J]. Energy&Environmental Science, 2022,15(5):2084-2095.
- [31]YUAN M L, CHEN J W, BAI Y L, et al. Unveiling electrochemical urea synthesis by co-activation of CO2and N2 with Mott-Schottky heterostructure catalysts[J].Angewandte Chemie International Edition, 2021, 60(19):10910-10918.
- [32]ROKOB T A, BAK??I, STIRLING A, et al. Reactivity models of hydrogen activation by frustrated Lewis pairs:synergistic electron transfers or polarization by electric field?[J]. Journal of the American Chemical Society,2013, 135(11):4425-4437.
- [33]BARZAGLI F, MANI F, PERUZZINI M. From greenhouse gas to feedstock:formation of ammonium carbamate from CO2 and NH3 in organic solvents and its catalytic conversion into urea under mild conditions[J].Green Chemistry, 2011, 13(5):1267.