融合火焰辐射图像和CNN的电站锅炉温度场在线监测研究Research on online monitoring of flame temperature field in power plant boilers by integrating radiation imaging and convolutional neural networks
周科,王健,任延南,张越,戴轩,梁传龙,金全,闫伟杰
摘要(Abstract):
现有火焰辐射图像测温技术因探测器镜头结焦问题导致测量误差,亟需一种能够智能消除结焦干扰的在线监测方法。提出一种融合火焰辐射图像和卷积神经网络(convolutional neural network,CNN)的电站锅炉温度场在线监测方法。首先,通过黑体炉标定探测器,建立探测器单色辐射强度与图像强度的关系;然后,设计适合火焰图像处理的CNN模型,并利用现场采集锅炉的未结焦火焰辐射强度图像构建学习集,建立火焰辐射强度图像还原模型;最后,利用模拟结焦火焰图像验证该方法的测量精度。研究结果表明:测温精度随着学习集数量的减少而降低,学习集火焰图像数量为3 000张时,测温相对误差为1.4%;测温精度随着结焦面积的增大而降低,结焦面积为30%时,测量温度的最大相对误差为0.7%。此外,研究表明学习集训练探测器的模型计算其他探测器结焦图像时,测温误差会增大,最大相对误差达34.6%。这表明应用该方法时需对每个燃烧器的探测器单独训练。研究方法能够智能消除结焦对火焰辐射图像的干扰,实现高精度温度场在线监测,为电站锅炉的安全运行和燃烧优化提供了可靠的技术支持。
关键词(KeyWords): 辐射测温;温度场;煤粉火焰图像;电站锅炉;卷积神经网络
基金项目(Foundation): 国家自然科学基金面上项目(52176144)~~
作者(Author): 周科,王健,任延南,张越,戴轩,梁传龙,金全,闫伟杰
DOI: 10.19666/j.rlfd.202504094
参考文献(References):
- [1]LI T J, HU Z C, YAN W J, et al. In situ measurement of cross-section temperature field of pulverized coal boiler based on solving radiative transfer equation using a single image sensor[J]. Proceedings of the Combustion Institute,2024, 40(1/4):105655.
- [2]亚云启.基于光谱分析和图像处理的炉膛火焰温度检测及燃烧诊断[D].徐州:中国矿业大学, 2017:1.YA Yunqi. Flame temperature measurement and combustion diagnosis of furnace based on spectral analysis and image processing[D]. Xuzhou:China University of Mining and Technology, 2017:1.
- [3]李框宇,高鹏,杜峰,等.基于火焰图像分析的1 000 MW电站锅炉炉膛温度及发射率同时测量研究[J].能源研究与利用, 2021(5):2-7.LI Kuangyu, GAO Peng, DU Feng, et al. Study on simultaneous measurement of furnace temperature and emissivity of 1 000 MW power plant Boiler based on flame image analysis[J]. Energy Research&Utilization.2021(5):2-7.
- [4]胡智超.基于辐射逆问题分析的大型炉膛火焰温度场及辐射参数同时测量研究[D].徐州:中国矿业大学,2023:1.HU Zhichao. Simultaneous measurement of temperature field and radiation parameters of large furnace based on inverse radiation problem analysis[D]. Xuzhou:China University of Mining and Technology, 2023:1.
- [5]AKRAM M W, LI G, JIN Y, et al. CNN based automatic detection of photovoltaic cell defects in electroluminescence images[J]. Energy, 2019, 189:116319.
- [6]ZHAO D F, TIAN C Y, FU Z J, et al. Multi scale convolutional neural network combining BiLSTM and attention mechanism for bearing fault diagnosis under multiple working conditions[J]. Scientific Reports, 2025,15(1):13035.
- [7]ZHANG X L, CUI J, LIU H J, et al. Weed identification in soybean seedling stage based on optimized faster RCNN algorithm[J]. Agriculture, 2023, 13(1):175.
- [8]GAO J, FRENCH A P, POUND M P, et al. Deep convolutional neural networks for image-based convolvulus sepium detection in sugar beet fields[J]. Plant Methods, 2020, 16(1):29.
- [9]KALBANDE K, PATIL W V, SYSTEMS D. The convolutional neural network for plant disease detection using hierarchical mixed pooling technique with smoothing to sharpening approach[J]. International Journal of Computing and Digital Systems, 2023, 14(1):357-377.
- [10]GILL H S, BATH B S, SINGH R, et al. Wheat crop classification using deep learning[J]. Multimedia Tools and Applications, 2024, 83(35):82641-82657.
- [11]LU S, LU Z, AOK S, et al. Fruit classification based on six layer convolutional neural network[C]//Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing(DSP). IEEE, 2018:1.
- [12]YADAV D P, KUMAR D, JALAL A S, et al.Morphological diagnosis of hematologic malignancy using feature fusion-based deep convolutional neural network[J]. Scientific Reports, 2023, 13(1):16988.
- [13]HAN J H, JI S Y, KIM M, et al. Diagnosis of trigeminal neuralgia based on plain skull radiography using convolutional neural network[J]. Scientific Reports, 2025,15(1):18888.
- [14]KASSUBEK J, ROSELLI F, WITZEL S, et al.Hypothalamic atrophy in primary lateral sclerosis, assessed by convolutional neural network-based automatic segmentation[J]. Scientific Reports, 2025, 15(1):1551.
- [15]KHAIRANDISH M O, SHARMA M, JAIN V, et al. A hybrid CNN-SVM threshold segmentation approach for tumor detection and classification of MRI brain images[J].Innovation and Research in Biomedical Engineering:IRBM, 2022, 43(4):290-299.
- [16]LI N J, CHANG F L. Video anomaly detection and localization via multivariate Gaussian fully convolution adversarial autoencoder[J]. Neurocomputing, 2019, 369:92-105.
- [17]TOTH P, GARAMI A, CSORDAS B. Image-based deep neural network prediction of the heat output of a step-grate biomass boiler[J]. Applied Energy, 2017, 200:155-169.
- [18]闫伟杰.基于光谱分析和图像处理的火焰温度及辐射特性检测[D].武汉:华中科技大学, 2014:1.YAN Weijie. Measurement of flame temperature and radiative properties based on spectral analysis and image processing[D]. Wuhan:Huazhong University of Science and Technology, 2014:1.
- [19]闫乐乐,李辉,邱聚能,等.基于区域对比度和SSIM的图像质量评价方法[J].应用光学, 2015(1):58-63.YAN Lele, LI Hui, QIU Juneng, et al. Image quality assessment method based on regional contrast and structural similarity[J]. Journal of Applied Optics, 2015(1):58-63.
- [20]赵岩,孟丽茹,王世刚,等.符合人眼视觉感知特性的改进PSNR评价方法[J].吉林大学学报(工学版), 2015,45(1):309-313.ZHAO Yan, MENG Liru, WANG Shigang, et al. Improved PSNR evaluation method consistent with human visual perception[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(1):309-313.