基于哌嗪类复配胺吸收剂的碳捕集、压缩液化成本模拟及敏感性分析Cost simulation and sensitivity analysis of carbon capture, compression and liquefaction based on piperazine-based mixed amine absorbents
侯大伟
摘要(Abstract):
燃烧后捕集是实现碳中和的托底技术,但碳捕集所产生的高额成本不利于这项技术的应用。为了研究碳捕集、压缩和液化成本变化的敏感因素,模拟了不同工艺参数和吸收剂类型产生的成本。结果表明:增加吸收塔塔板数可以促进吸收剂对CO_2的捕集效率,相应的投资成本也会升高;吸收塔进口吸收剂温度升高,捕集率未出现明显下降,反而冷却剂和水用量减少,运行成本有一定程度降低;此外,再沸比对CO_2捕集率和成本影响最大,可能是降低成本的关键因素;同时,比较了不同液化压力、不同压缩级数的能耗,发现液化压力越低、压缩级数越多,总成本越高,其中设备投资成本和运营维护成本变化较明显,而公用工程成本受影响较小。
关键词(KeyWords): 碳排放;碳捕集;碳交易;压缩和液化;成本
基金项目(Foundation):
作者(Author): 侯大伟
DOI: 10.19666/j.rlfd.202412176
参考文献(References):
- [1] CALVIN K, DASGUPTA D, KRINNER G, et al. IPCC,2023:climate change 2023:synthesis report.Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change[M]. IPCC, Geneva, Switzerland:Intergovernmental Panel on Climate Change(IPCC),2023:1.
- [2]李媛,张辰,张腾,等.新型CO2捕集溶剂及工艺的研究进展[J].热力发电, 2023, 52(7):14-25.LI Yuan, ZHANG Chen, ZHANG Teng, et al. Research progress of novel carbon dioxide capture solvents and processes[J]. Thermal Power Generation, 2023, 52(7):14-25.
- [3] ZENG C, STRINGER L C, LV T. The spatial spillover effect of fossil fuel energy trade on CO2 emissions[J].Energy, 2021, 223:120038.
- [4] ACHAKULWISUT P, ERICKSON P, GUIVARCH C,et al. Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions[J].Nature Communications, 2023, 14:5425.
- [5] ASGHAR U, RAFIQ S, ANWAR A, et al. Review on the progress in emission control technologies for the abatement of CO2, SOx and NOx from fuel combustion[J]. Journal of Environmental Chemical Engineering, 2021, 9(5):106064.
- [6] HUMBERT P S, CASTRO GOMES J. CO2 activated steel slag-based materials:a review[J]. Journal of Cleaner Production, 2019, 208:448-457.
- [7] SHAN S, GEN?S Y, KAMRAN H W, et al. Role of green technology innovation and renewable energy in carbon neutrality:a sustainable investigation from Turkey[J]. Journal of Environmental Management, 2021,294:113004.
- [8] PHOUMIN H, KIMURA F, ARIMA J. ASEAN’s energy transition towards cleaner energy system:energy modelling scenarios and policy implications[J].Sustainability, 2021, 13:2819.
- [9] HOLECHEK J L, GELI H M E, SAWALHAH M N,et al. A global assessment:can renewable energy replace fossil fuels by 2050[J]. Sustainability, 2022, 14:4792.
- [10] FERON P H M, COUSINS A, JIANG K, et al. An update of the benchmark post-combustion CO2-capture technology[J]. Fuel, 2020, 273:117776.
- [11] WU X, WANG M, LIAO P, et al. Solvent-based post-combustion CO2 capture for power plants:a critical review and perspective on dynamic modelling, system identification, process control and flexible operation[J].Applied Energy, 2020, 257:113941.
- [12]李磊,赵宴民,田海洋,等.燃气烟气中低浓度CO2的低能耗高效捕集工艺模拟优化[J].化工进展, 2024,43(增刊1):581-589.LI Lei, ZHAO Yanmin, TIAN Haiyang, et al. Simulation and optimisation of low-energy and high-efficiency CO2capture process for low concentration CO2 in gas flue gas[J]. Chemical Industry and Engineering Progress, 2024,43(Suppl.1):581-589.
- [13]白雨鑫,郑润芬,魏立新,等.用于捕集CO2的相变吸收剂与乙醇胺吸收剂性能对比[J].石油与天然气化工,2024, 53(4):19-27.BAI Yuxin, ZHENG Runfen, WEI Lixin, et al.Comparative study on the performance of phase change absorbent and ethanolamine absorbent for CO2capture[J]. Chemical Engineering of Oil&Gas, 2024,53(4):19-27.
- [14] YANG J, YU X, AN L, et al. CO2 capture with the absorbent of a mixed ionic liquid and amine solution considering the effects of SO2 and O2[J]. Applied Energy,2017, 194:9-18.
- [15] GAO W, LIANG S, WANG R, et al. Industrial carbon dioxide capture and utilization:state of the art and future challenges[J]. Chemical Society Reviews, 2020, 49:8584-8686.
- [16] XU Q, LI X, YU J, et al. Optimization of parameters and thermodynamics of gasification process for enhanced CO2 capture in an IGCC system[J]. Energy, 2024, 304:131853.
- [17] TIWARI S, AGARWAL M, PANT K, et al. A comparative study of polyamine and piperazine as promoter for CO2 absorption performance in aqueous methyldiethanolamine blend system:430 MW power plant data simulation and economic assessment[J].Sustainable Chemistry for the Environment, 2023, 4:100054.
- [18] GABRIELA M, NELA S, GABRIELA P, et al. Novel technology for CO2 capture using green solvents[C].2021 10th International Conference on Energy and Environment(CIEM), IEEE, 2021:1-5.
- [19] WANG J, ZHANG X, YANG L. Energy consumption analysis and new process of CO2 compression liquefaction based on exergy analysis[J]. Journal of China Coal Society, 2023, 48(11):4213-4223.
- [20] XIN Y, ZHANG Y, XUE P, et al. The optimization and thermodynamic and economic estimation analysis for CO2 compression-liquefaction process of CCUS system using LNG cold energy[J]. Energy, 2021, 236:121376.
- [21] ABBASI K R, SHAHBAZ M, ZHANG J, et al. Analyze the environmental sustainability factors of China:the role of fossil fuel energy and renewable energy[J]. Renewable Energy, 2022, 187:390-402.
- [22]张威,葛春亮,丁得龙,等.新型均相少水吸收剂降解和抗降解性能研究[J].能源工程, 2024, 44(3):64-70.ZHANG Wei, GE Chunliang, DING Delong, et al. The degradation and anti-degradation performance of novel homogeneouswater-lean solvent[J]. Energy Engineering,2024, 44(3):64-70.
- [23] ZHANG T, YU Y, ZHANG Z. An interactive chemical enhancement of CO2 capture in the MEA/PZ/AMP/DEA binary solutions[J]. International Journal of Greenhouse Gas Control, 2018, 74:119-129.
- [24] APAIYAKUL R, NIMMANTERDWONG P,KANCHANAKUNGVALKUL T, et al. Analysis and insights of the second-generation ternary AMP-PZ-MEA solvents for post-combustion carbon capture:absorption-regeneration performance[J]. International Journal of Greenhouse Gas Control, 2024, 132:104038.
- [25] ANDREONI V. Estimating the European CO2 emissions change due to COVID-19 restrictions[J]. Science of The Total Environment, 2021, 769:145115.
- [26] ZHANG F. When green recovery fails to consider coal pushback:exploring global coal rebounds, production,and policy retrenchment post Covid-19[J]. Social Science, 2023, 101:103142.
- [27] CASSETTI G. The interplay among COVID-19economic recovery, behavioural changes, and the European Green Deal:an energy-economic modelling perspective[J]. Energy, 2023:263(Part C):125798.
- [28] DZIEJARSKI B, KRZY?Y?SKA R, ANDERSSON K.Current status of carbon capture, utilization, and storage technologies in the global economy:a survey of technical assessment[J]. Fuel, 2023, 342:127776.
- [29] LIN B, TAN Z. How much impact will low oil price and carbon trading mechanism have on the value of carbon capture utilization and storage(CCUS)project? Analysis based on real option method[J]. Journal of Cleaner Production, 2021, 298:126768.
- [30] HONG W Y. A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future[J]. Carbon Capture Science&Technology, 2022, 3:100044.
- [31] SATO M, RAFATY R, CALEL R, et al. Allocation,allocation, allocation! The political economy of the development of the European Union Emissions Trading System[J]. WIREs Climate Change, 2022, 13:e796.
- [32] WENG Z, LIU T, WU Y, et al. Air quality improvement effect and future contributions of carbon trading pilot programs in China[J]. Energy Policy, 2022, 170:113264.
- [33] FAN L. Electric vehicle routing problem considering energy differences of charging stations[J]. Journal of Cleaner Production, 2023, 418:138184.
- [34] LIU G, CAI B, LI Q, et al. China’s pathways of CO2capture, utilization and storage under carbon neutrality[J]. Carbon Managemen, 2022, 13(1):435-449.
- [35] GALINDO P, SCH?FFER A, BRECHTEL K, et al.Experimental research on the performance of CO2-loaded solutions of MEA and DEA at regeneration conditions[J].Fuel, 2012, 101:2-8.
- [36] DUGAS R E, ROCHELLE G T. CO2 absorption rate into concentrated aqueous monoethanolamine and piperazine[J]. Journal of Chemical&Engineering Data,2011, 56:2187-2195.
- [37]刘逸芸,刘向阳,贾林权,等.离子液体捕集火电厂烟气CO2模拟与分析[J].热力发电, 2023, 52(12):115-123.LIU Yiyun, LIU Xiangyang, JIA Linquan, et al.Simulation analysis of CO2 capture at coal-fired power plant with ionic liquids[J]. Thermal Power Generation,2023, 52(12):115-123.