质子交换膜电解槽与燃煤电站耦合的技术经济性分析Techno-economic analysis of coal-fired power plant integrated with proton exchange membrane electrolyzer
陈志董,张菁,詹宏伟,孔艳强,杨立军,杜小泽
摘要(Abstract):
质子交换膜(protonexchangemembrane,PEM)电解槽可以将绿电转化为氢能,但PEM电解槽的能量转化效率较低,电解槽出口水的能量未被充分利用。为了充分利用PEM电解制氢系统中的余热,在发电和热电联产2种运行模式下,提出了集成660 MW燃煤电站和PEM电解槽的耦合系统;使用EBSILON和MATLAB Simulink软件进行建模,并对系统进行了热力学和经济性分析。提出发电模式中,将电解槽的出口水用于加热燃煤机组的给水;在热电联产模式中,将电解槽的出口水与抽汽共同用于加热供热网络的回水;产生的氧气输送到锅炉中燃烧,进而促进炉内燃烧。结果显示:与参考燃煤电站相比,发电模式中的供电量增加了2.55MW,供电效率提高了0.17百分点,锅炉效率提高了0.04百分点;热电联产模式中,供电量增加了5.83MW,系统总效率提高了0.40百分点。将机组出功增加量折算到PEM制氢系统后,在发电模式下PEM制氢系统的?效率达到69.74%,提高了3.44百分点;在热电联产模式下PEM制氢系统的?效率达到75.41%,提高了9.11百分点。2种模式下的系统?效率分别为40.20%和40.18%。电解制氢经济性分析显示:发电和热电联产模式的年售电收入增长分别为546万元和1246万元,净现值增长分别为6 132万元和14 014万元;独立系统中的平准化制氢成本为42.72元/kg;集成后发电和热电联产模式下的平准化制氢成本分别为42.55、40.79元/kg。
关键词(KeyWords): 质子交换膜电解槽;燃煤电站;制氢;技术经济性分析
基金项目(Foundation): 国家自然科学基金项目(52276062,52076076)~~
作者(Author): 陈志董,张菁,詹宏伟,孔艳强,杨立军,杜小泽
DOI: 10.19666/j.rlfd.202405131
参考文献(References):
- [1]武鑫,冯歌,熊星宇.用于风功率平抑的SOEC系统功率控制策略[J].动力工程学报, 2023, 43(12):1626-1633.WU Xin, FENG Ge, XIONG Xingyu. Power control strategy of the SOEC system for smoothing wind power fluctuations[J]. Journal of Chinese Society of Power Engineering, 2023, 43(12):1626-1633.
- [2] COOPER N, HOREND C, R?BEN F, et al. A framework for the design&operation of a large-scale wind-powered hydrogen electrolyzer hub[J]. International Journal of Hydrogen Energy, 2022, 47(14):8671-8686.
- [3] QIAN J F, WANG C Y, ZHANG X J, et al. Synthesis and properties of anion exchange membranes with dense multi-cations and flexible side chains for water electrolysis[J]. Journal of Power Sources, 2023, 564:232877.
- [4]陆王琳,陆启亮,张志洪.碳中和背景下综合智慧能源发展趋势[J].动力工程学报, 2022, 42(1):10-18.LU Wanglin, LU Qiliang, ZHANG Zhihong. An overview of the integrated energy systems’ development under the background of carbon neutralization[J]. Journal of Chinese Society of Power Engineering, 2022, 42(1):10-18.
- [5] ABDOLLAHIPOUR A, SAYYAADI H. Optimal design of a hybrid power generation system based on integrating PEM fuel cell and PEM electrolyzer as a moderator for micro-renewable energy systems[J]. Energy, 2022, 260:124944.
- [6] GU X F, YING Z, ZHENG X Y, et al. Photovoltaic-based energy system coupled with energy storage for all-day stable PEM electrolytic hydrogen production[J].Renewable Energy, 2023, 209:53-62.
- [7] MARíA V, VIVES A, WANG RUIQI, et al.Techno-economic analysis of large-scale green hydrogen production and storage[J]. Applied Energy, 2023, 346:121333.
- [8] ZHAO H B, DU H C, PENG Z X, et al. Thermodynamic performance analysis of a novel energy storage system consist of asymmetric PEMEC and SOFC combined cycle[J]. Energy Conversion and Management, 2023,286:117077.
- [9] CHEN Z D, WANG Z H, FAN Z X, et al. Safe-efficient operation strategies for integrated system of photovoltaic and proton exchange membrane electrolysis cells[J].International Journal of Hydrogen Energy, 2024, 49:184-206.
- [10] WANG Z M, WANG X Y, CHEN Z C, et al. Energy and exergy analysis of a proton exchange membrane water electrolysis system without additional internal cooling[J].Renewable Energy, 2021, 180:1333-1343.
- [11] CHEN Z D, HOU Y C, LIU M Y, et al. Thermodynamic and economic analyses of sewage sludge resource utilization systems integrating drying, Incineration, and power generation processes[J]. Applied Energy, 2022,327:120093.
- [12] CHEN Z D, SU C, WU Z X, et al. Operation strategy and performance analyses of a distributed energy system incorporating concentrating PV/T and air source heat pump for heating supply[J]. Applied Energy, 2023, 341:121125.
- [13] XU C, LI X S, XU G, et al. Energy, exergy and economic analyses of a novel solar-lignite hybrid power generation process using lignite pre-drying[J]. Energy Conversion and Management, 2018, 170:19-33.
- [14] YANG Y P, XU C, XU G, et al. A new conceptual cold-end design of boilers for coal-fired power plants with waste heat recovery[J]. Energy Conversion and Management, 2015, 89:137-146.
- [15]德州久发电气设备安装有限公司[Z/OL].[2024-05-11].http://dzjf0118.okhy.cn/.Dezhou Jiufa Technology Co., Ltd.[Z/OL].[2024-05-11]. http://dzjf0118.okhy.cn/.
- [16] CORREA G, VOLPE F, MAROCCO P, et al. Evaluation of levelized cost of hydrogen produced by wind electrolysis:Argentine and Italian production scenarios[J]. Journal of Energy Storage, 2022, 52:105014.
- [17]林旗力,戚宏勋,黄晶晶,等.碱性-质子交换膜水电解复合制氢平准化成本分析[J].储能科学与技术,2023, 12(11):3572-3580.LIN Qili, QI Hongxun, HUANG Jingjing, et al.Levelized cost of combined hydrogen production by water electrolysis with alkaline-proton exchange membrane[J]. Energy Storage Science and Technology,2023, 12(11):3572-3580.