海流对半潜型浮式风力发电机运动响应及发电功率的影响Effects of ocean current on motion response and power output of semi-submersible floating offshore wind turbines
刘江,曹越,华涛,翁培奋,王明勇
摘要(Abstract):
海上浮式风机在海洋环境中会受到多种因素的影响,这些海洋环境会显著改变浮式风机的运动状态,进而使风机的发电性能发生改变。研究了不同风浪条件下海流对半潜型浮式风力发电机运动响应的影响,并比较分析了海流对风力机发电功率的影响。选取半潜型浮式平台和5 MW风力机作为研究对象,采用OpenFAST、FAST to AQWA(F2A)和AQWA软件进行仿真。首先,在稳态风规则波、稳态风不规则波和湍流风不规则波3种环境条件下,分别计算了浮式平台的纵荡、垂荡、纵摇运动响应以及发电功率;然后,计算添加海流因素之后上述海况下的运动响应和发电功率。结果表明:海流主要对纵荡运动产生较大影响,最大差异达到13%,但对垂荡运动和纵摇运动的影响相对较小;在3种环境条件下的发电功率计算中,海流对风力发电机的平均发电功率和最大发电功率没有影响,工况间的差异小于1%,但在较复杂的工况下,发电功率的标准偏差差异较小,海流不会对发电功率的变化震荡程度产生影响。
关键词(KeyWords): 浮式风机;半潜式;海流;发电功率
基金项目(Foundation): 上海市2020年度“科技创新行动计划”社会发展科技攻关项目(20dz1205302)~~
作者(Author): 刘江,曹越,华涛,翁培奋,王明勇
DOI: 10.19666/j.rlfd.202507126
参考文献(References):
- [1]李志川,胡鹏,马佳星,等.中国海上风电发展现状分析及展望[J].中国海上油气, 2022, 34(5):229-236.LI Zhichuan, HU Peng, MA Jiaxing, et al. Analysis and prospect of offshore wind power development in China[J].China Offshore Oil and Gas, 2022, 34(5):229-236.
- [2]张亮,吴海涛,荆丰梅,等.海上漂浮式风力机研究进展及发展趋势[J].海洋技术, 2010, 29(4):122-126.ZHANG Liang, WU Haitao, JING Fengmei, et al. Study on offshore floating wind turbines and their development[J].Ocean Technology, 2010, 29(4):122-126.
- [3]李筹胜,朱玲,任亚君,等.漂浮式海上风电系泊系统关键技术研究[J].水力发电, 2025, 51(3):82-91.LI Chousheng, ZHU Ling, REN Yajun, et al. Research on key technologies of floating offshore wind power mooring systems[J]. Water Power, 2025, 51(3):82-91.
- [4]阮胜福.海上风电浮式基础动力响应研究[D].天津:天津大学, 2010:4.RUAN Shengfu. Study on the dynamic response of floating foundations for offshore wind turbines[D].Tianjin:Tianjin University, 2010:4.
- [5]唐耀,范菊,邹早建,等.浮式风机平台在规则波和定常风作用下的动力响应分析[J].中国海洋平台, 2014,29(1):50-56.TANG Yao, FAN Ju, ZOU Zaojian, et al. Dynamic response analysis of floating offshore wind turbine platform in regular waves and steady winds[J]. China Offshore Platform, 2014, 29(1):50-56.
- [6]冯士伦,杨虎,唐友刚,等.波浪载荷及气动力引起的半潜浮式风机疲劳损伤分析[J].海洋工程, 2022,40(5):19-27.FENG Shilun, YANG Hu, TANG Yougang, et al. Fatigue damage of semi-submersible floating wind turbine caused by wave load and aerodynamic forces[J]. The Ocean Engineering, 2022, 40(5):19-27.
- [7]滕丽霞,任建宇,乐丛欢.波浪荷载对全潜式浮式风机拖航运动响应的影响[J].港口航道与近海工程,2025, 62(3):1-3.TENG Lixia, REN Jianyu, LE Conghuan. Effect of wave loads on response to towing motion of fully submerged floating wind turbine[J]. Port Engineering Technology,2025, 62(3):1-3.
- [8]刘英芳,黎国彦,李志雨,等.非线性波浪载荷对15 MW半潜型浮式风机基础运动响应的影响研究[J].海洋工程, 2025, 43(3):16-26.LIU Yingfang, LI Guoyan, LI Zhiyu, et al. Study on the effect of nonlinear wave loads on the motion response of the foundation of a 15 MW semi-submersible floating wind turbine[J]. Journal of Ocean Engineering and Science, 2025, 43(3):16-26.
- [9]韩长志.风浪联合作用下浮式风机系统耦合动力学特性研究[D].镇江:江苏科技大学, 2022:3.HAN Changzhi. Research on the coupling dynamic characteristics of offshore floating wind power system under the combined action of wind and wave[D].Zhenjiang:Jiangsu University of Science and Technology,2022:3.
- [10]ELOBEID M, PILLAI A C, TAO L, et al. Implications of wave–current interaction on the dynamic responses of a floating offshore wind turbine[J]. Ocean Engineering,2024, 292:116571.
- [11]SIRIL O, BJORN S, JAN M, et al. Applying partial safety factors in mooring system design[C]//American Society of Mechanical Engineers(ASME). Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering 2005:Offshore Technology. New York:American Society of Mechanical Engineers(ASME)Press, 2005:1.
- [12]余龙,王娟.半潜式平台深水锚泊系统三维时域动力分析[J].中国海洋平台, 2007(6):34-37.YU Long, WANG Juan. Dynamic analysis of the 3d mooring system on semi-submersible platform in deep water[J]. China Ocean Platform, 2007(6):34-37.
- [13]陈嘉豪,裴爱国,马兆荣,等.海上漂浮式风机关键技术研究进展[J].南方能源建设, 2020, 7(1):8-20.CHEN Jiahao, PEI Aiguo, MA Zhaorong, et al. A review of the key technologies for floating offshore wind turbines[J].Southern Energy Construction, 2020, 7(1):8-20.
- [14]蔡新,张洪建,王浩,等.面向深远海的新型海上风力机浮式平台水动力性能研究[J].中国电机工程学报,2022, 42(12):4339-4352.CAI Xin, ZHANG Hongjian, WANG Hao, et al. Research on the hydrodynamic performance of a novel floating platform of the offshore wind turbine in deep water[J].Proceedings of the CSEE, 2022, 42(12):4339-4352.
- [15]杨则英,孙芮,毕传龙,等.波流组合作用的大间距群桩基础冲刷试验研究[J].土木工程学报, 2025, 58(5):65-78.YANG Zeying, SUN Rui, BI Chuanlong, et al.Experimental study on combined wave-current scouring around large-spacing pile group foundation[J]. China Civil Engineering Journal, 2025, 58(5):65-78.
- [16]李洪义,殷学成.波流相互作用中潜堤上低频波浪数值模拟[J].中国水运(下半月), 2014, 14(12):100-102.LI Hongyi, YIN Xuecheng. Numerical simulation of lowfrequency waves on submerged breakwaters under wavecurrent interaction[J]. China Water Transport(Half Monthly), 2014, 14(12):100-102.
- [17]赵昊辰.台风期间浪流相互作用对海浪影响的数值模拟[D].青岛:中国科学院研究生院(海洋研究所), 2014:4.ZHAO Haochen. Numerical study of wave-current influence on waves during typhoon processes[D].Qingdao:Graduate University of Chinese Academy of Sciences(Institute of Oceanology), 2014:4.
- [18]刘莉红,郑祖光,琚建华.波流相互作用的大气系统中振荡模态的分析[J].气象学报, 2009, 67(4):569-579.LIU Lihong, ZHENG Zuguang, JU Jianhua. Analysis of vacillation mode in the atmosphere system with interaction between the basic flow and the waves[J]. Acta Meteorologica Sinica, 2009, 67(4):569-579.
- [19]CRISAN D, HOLM D D, STREET O D. Wave-current interaction on a free surface[J]. Studies in Applied Mathematics, 2021, 147(4):1277-1338.
- [20]隋海波,杨旭,康庄,等.半潜式支持平台靠泊Spar的双体水动力特性分析[J].船舶与海洋工程, 2022,38(3):9-16.SUI Haibo, YANG Xu, KANG Zhuang, et al. An analysis on the hydrodynamic characteristics of a semi-submersible support platform and a spar in side-by-side operation[J].Ship&Ocean Engineering, 2022, 38(3):9-16.
- [21]李达,孙涛,易丛,等.深远海浮式风电技术发展研究[J].中国工程科学, 2025, 27(2):108-122.LI Da, SUN Tao, YI Cong, et al. Development of deep-sea floating wind power technology[J]. Chinese Engineering Science, 2025, 27(2):108-122.
- [22]LI W, RICH P, WEIHUA A, et al. Wind and river effects on a coastal current in Chatham sound, British Columbia[J].Estuarine, Coastal and Shelf Science, 2024, 309:108966.
- [23]KAREEM A, LI Y. Wind-excited surge response of tensionleg platform:frequency-domain approach[J]. Journal of Engineering Mechanics, 1993, 119(1):161-183.
- [24]YE K, JI J C. Current, wave, wind and interaction induced dynamic response of a 5 MW spar-type offshore directdrive wind turbine[J]. Engineering Structures, 2019, 178:395-409.
- [25]BULJAC A, KOZMAR H, YANG W, et al. Concurrent wind, wave and current loads on a monopile-supported offshore wind turbine[J]. Engineering Structures, 2022,255:113950.
- [26]WANG B B T, XIAO Z. Summary of foundation design for offshore floating wind turbine[J]. Electric Power Survey&Design, 2018(9):52-57.
- [27]National Renewable Energy Laboratory. Definition of a5 MW reference wind turbine for offshore system development[M]. Charleston:BiblioGov BiblioBazaar, 2012:1.
- [28]ROBERTSON A, JONKMAN J, MASCIOLA M, et al.Definition of the semisubmersible floating system for phase II of OC4[R]. Golden, CO:National Renewable Energy Laboratory, 2014:1.
- [29]WANG B, GAO X, LI Y, et al. Dynamic response analysis of a semi-submersible floating wind turbine based on different coupling methods[J]. Ocean Engineering, 2024,297:116948.
- [30]郭臻.风帆助航船风浪条件下附加弯矩的研究[D].大连:大连理工大学, 2022:5.GUO Zhen. Research on additional moment of sailassisted ship under the condition of winds and waves[D].Dalian:Dalian University of Technology, 2022:5.