基于智能前馈的垃圾焚烧炉脱硝控制策略Denitration control strategy for waste incinerator based on intelligent feedforward
刘学迅,李峥辉,李志东,易刚,叶育生,张燕星,吴康洛,卢志民,俞祝良,姚顺春
摘要(Abstract):
针对选择性非催化还原(SNCR)脱硝控制系统大迟延、大惯性的特点,以及垃圾特性不稳定和燃烧状态波动大导致的脱硝控制稳定性差的问题,设计了一套基于智能前馈的垃圾焚烧炉脱硝控制策略。该控制策略以串级PID控制为基础,采用基于偏最小二乘法(PLS)的模型预测前馈和关键变量前馈相结合的智能前馈结构,同时采用模型预测误差自修正方法以保证模型预测的精度和稳定性。将该脱硝智能控制策略应用于某500 t/d垃圾焚烧机组,应用结果表明:脱硝智能控制投入前,NO_x排放质量浓度波动较大,统计时间内NO_x质量浓度相对标准偏差为19.81%,其中瞬时NO_x排放质量浓度小于150 mg/m~3的占比为95.62%;脱硝智能控制投入后,NO_x排放质量浓度波动显著减小,统计时间内NO_x质量浓度相对标准偏差为12.40%,其中瞬时NO_x排放质量浓度小于150 mg/m~3的占比为99.31%,,控制稳定性显著提高,统计时间内日均进氨流量和日均进氨总量较智能控制投入前分别下降38.81%和38.82%,实现了垃圾焚烧炉SNCR脱硝系统的稳定、经济和环保运行。
关键词(KeyWords): 垃圾焚烧炉;SNCR;脱硝控制;控制策略;串级PID控制;智能前馈
基金项目(Foundation): 国家重点研发计划政府间国际科技创新合作项目(2019YFE0109700);; 广东省自然科学基金-杰出青年项目(2021B1515020071)~~
作者(Author): 刘学迅,李峥辉,李志东,易刚,叶育生,张燕星,吴康洛,卢志民,俞祝良,姚顺春
DOI: 10.19666/j.rlfd.202108185
参考文献(References):
- [1]ADELEKE O,AKINLABI S A,JEN T C,et al.Application of artificial neural networks for predicting the physical composition of municipal solid waste:an assessment of the impact of seasonal variation[J].Waste Management&Research,2021,8:734242X21991642.
- [2]HE H,MENG X,TANG J,et al.Prediction of MSWIfurnace temperature based on TS fuzzy neural network[C]//2020 39th Chinese Control Conference(CCC).IEEE,2020:5701-5706.
- [3]姜明男,汪守康,何俊捷,等.基于支持向量机的大型生活垃圾焚烧炉排炉运行参数预测[J].中国电机工程学报,2022,42(1):221-229.JIANG Mingnan,WANG Shoukang,HE Junjie,et al.Prediction for operating parameters of large-scale domestic waste incineration grate furnace based on support vector machine[J].Proceedings of the CSEE,2022,42(1):221-229.
- [4]叶福南,姚顺春,陈耀荣,等.NOx浓度分布在线监测系统研发及应用[J].广东电力,2019,32(7):29-36.YE Funan,YAO Shunchun,CHEN Yaorong,et al.Development and application of online monitoring system for NOx concentration distribution[J].Guangdong Electric Power,2019,32(7):29-36.
- [5]朱传强,胡利华,沈宏伟,等.生活垃圾焚烧选择性非催化还原(SNCR)的工程试验研究[J].工程热物理学报,2020,41(8):2089-2095.ZHU Chuanqiang,HU Lihua,SHEN Hongwei,et al.Experimental study on selective non-catalytic reduction(SNCR) in domestic waste incineration[J].Journal of Engineering Thermophysics,2020,41(8):2089-2095.
- [6]白建云,雷秀军.SNCR烟气脱硝系统多模型GPC-PID串级预测控制[J].电气自动化,2021,43(2):30-34.BAI Jianyun,LEI Xiujun.Multi-model GPC-PID cascade predictive control of SNCR flue gas denitration system[J].Automatic Control Systems&Equipments,2021,43(2):30-34.
- [7]来长胜,白建云,印江.广义预测控制算法在CFB锅炉SNCR烟气脱硝系统中的应用[J].热力发电,2016,45(12):109-113.LAI Changsheng,BAI Jianyun,YIN Jiang.Application of generalized predictive control algorithm in selective noncatalytic reduction flue gas denitration system[J].Thermal Power Generation,2016,45(12):109-113.
- [8]高明明,于浩洋,吕俊复,等.循环流化床氮氧化物排放预测模型及优化控制研究[J].洁净煤技术,2020,26(3):46-51.GAO Mingming,YU Haoyang,LYU Junfu,et al.Study on prediction model and optimal control of nitrogen oxides emission of circulating fluidized bed[J].Clean Coal Technology,2020,26(3):46-51.
- [9]朱竹军,白建云,刘林仙.专家模糊控制在SNCR脱硝系统中的研究及应用[J].自动化仪表,2018,39(7):34-38.ZHU Zhujun,BAI Jianyun,LIU Linxian.Research and application of expert fuzzy control in SNCR denitration system[J].Process Automation Instrumentation,2018,39(7):34-38.
- [10]冯慧山.Smith预估-串级前馈在SNCR烟气脱硝自动控制的应用[J].仪器仪表用户,2016,23(5):51-53.FENG Huishan.The application of smith predictioncascade feedforward method on automatic control system of SNCR flue gas denitrification[J].Instrument User,2016,23(5):51-53.
- [11]孔红.生活垃圾焚烧厂SNCR脱硝系统的自动控制[J].环境卫生工程,2018,26(3):23-25.KONG Hong.Automatic control of SNCR denitrification system in waste incineration plant[J].Environmental Sanitation Engineering,2018,26(3):23-25.
- [12]陈志刚,黄巧贤,杨波,等.城市垃圾焚烧炉SNCR脱硝系统优化[J].广东电力,2016,29(11):12-17.CHEN Zhigang,HUANG Qiaoxian,YANG Bo,et al.Optimization on SNCR denitrification system in municipal waste incinerators[J].Guangdong Electric Power,2016,29(11):12-17.
- [13]陆续,吴庆龙,张向宇,等.高温还原区喷氨脱硝机理与模拟研究[J].热力发电,2019,48(12):64-68.LU Xu,WU Qinglong,ZHANG Xiangyu,et al.Mechanism and simulation study of ammonia-injected denitrification at high-temperature reduction zone[J].Thermal Power Generation,2019,48(12):64-68.
- [14]LOCCI C,VERVISCH L,FARCY B,et al.Selective noncatalytic reduction (SNCR) of nitrogen oxide emissions:a perspective from numerical modeling[J].Flow,Turbulence and Combustion,2018,100(2):301-340.
- [15]刘威,郭直清,姜丰,等.协同围攻策略改进的灰狼算法及其PID参数优化[J/OL].计算机科学与探索,2021:1-16[2021-07-23].https://t.cnki.net/kcms/detail?v=3uoq Ih G8C46Nm Ww7Yp Es KHTPv OGr UOOq X1co EOz L8AFz MEF_Swq8Fs Bk DZZ7K-cf J0h MCln RY8e U4f7EEVOkxj8m SYi2qv0t&uniplatform=NZKPT&uid=WEEv REc w Sl JHSld Sdm Vq MDh6c EFHWWg0b GFIe Hh MMl VTZ1ZQNk VTQm1p QT0=$9A4h F_YAuv Q5obg VAq NKPCYc Ej Kens W4IQMovw Htwk F4VYPo Hb Kx Jw!!.LIU Wei,GUO Zhiqing,JIANG Feng,et al.Improved grey wolf optimizer based on cooperative attack strategy and its PID parameter optimization[J/OL].Computer Science and Exploration,2021:1-16[2021-07-23].https://t.cnki.net/kcms/detail?v=3uoq Ih G8C46Nm Ww7Yp Es KHTPv OGr UOOq X1co EOz L8AFz MEF_Swq8Fs Bk DZZ7K-cf J0h MCln RY8e U4f7EEVOkxj8m SYi2 qv0t&uniplatform=NZKPT&uid=WEEv REcw Sl JHSld Sdm Vq MDh6c EFHWWg0b GFIe Hh MMl VTZ1ZQNk VTQm1p QT0=$9A4h F_YAuv Q5obg VAq NKPCYc Ej Kens W4IQMovw Htwk F4VYPo Hb Kx Jw!!.
- [16]杨国田,王英男,谢锐彪,等.基于变量选择的深度置信神经网络锅炉烟气NOx排放预测[J].热力发电,2020,49(4):34-40.YANG Guotian,WANG Yingnan,XIE Ruibiao,et al.Prediction of NOx emission from boiler based on DBNwith variable selection[J].Thermal Power Generation,2020,49(4):34-40.
- [17]PAN H,SU T,HUANG X,et al.LSTM-based soft sensor design for oxygen content of flue gas in coal-fired power plant[J].Transactions of the Institute of Measurement and Control,2021,43(1):78-87.
- [18]LI N,HU Y.The deep convolutional neural network for NOx emission prediction of a coal-fired boiler[J].IEEEAccess,2020,8:85912-85922.